Electrical conductivity of Sr2−xVMoO6−y (x = 0.0, 0.1, 0.2) double perovskites

Electrical conductivity of Sr2-xVMoO6-y (x = 0.0, 0.1, 0.2) double perovskites has been investigated in a reducing atmosphere at temperatures up to 800 °C. This material has a key application in solid oxide fuel cell anodes as a mixed ion and electron conductor. A solid state synthesis technique was used to fabricate materials and crystal structure was verified through x-ray diffraction. Subsequent to conventional sintering in a reducing environment, elemental valence states were indentified through x-ray photoemission spectroscopy on the double perovskite material before and after annealing in a hydrogen environment. Samples exhibited metallic like conduction with electrical conductivities of 1250 S/cm (Sr2VMoO6-y′), 2530 S/cm (Sr1.8VMoO6-y″), and 3610 S/cm (Sr1.9VMoO6-y‴) at 800 °C in 5% H2/95% N2, with a substantial increase in conductivity upon cooling to room temperature. Room temperature electrical conductivity values for Sr1.9VMoO6-y‴ make it a candidate as the highest electrically conductive oxide...

[1]  S. Sofie,et al.  Processing and characterization of Sr2−xVMoO6−δ double perovskites , 2013 .

[2]  J. Vohs,et al.  The stability of lanthanum strontium vanadate for solid oxide fuel cells , 2013 .

[3]  M. Karppinen,et al.  Role of SrMoO4 in Sr2MgMoO6 synthesis , 2011 .

[4]  I. Solovyev Optimized effective potential model for the double perovskites Sr2 − xYxVMoO6 and Sr2 − xYxVTcO6 , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  A. Aguadero,et al.  Study of the Crystal Structure, Thermal Stability and Conductivity of Sr(V0.5Mo0.5)O3+δ as SOFC Material , 2011 .

[6]  T. He,et al.  Double-perovskites A2FeMoO6−δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells , 2010 .

[7]  Jingli Luo,et al.  Surface modified Ni foam as current collector for syngas solid oxide fuel cells with perovskite anode catalyst , 2010 .

[8]  J. M. Chen,et al.  Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6 − δ SOFC-anode material , 2010 .

[9]  Yunhui Huang,et al.  Double-Perovskite Anode Materials Sr2MMoO6 (M = Co, Ni) for Solid Oxide Fuel Cells , 2009 .

[10]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[11]  Meilin Liu,et al.  Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy , 2007 .

[12]  Y. Takahashi,et al.  XPS study of ferrimagnetic double perovskite thin films , 2007 .

[13]  J. Goldberger,et al.  Electronic, magnetic and structural properties of A2VMoO6 perovskites (A=Ca, Sr) , 2006 .

[14]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[15]  John T. S. Irvine,et al.  An Efficient Solid Oxide Fuel Cell Based upon Single‐Phase Perovskites , 2005 .

[16]  S. Ikeda,et al.  Highest conductivity oxide SrMoO3 grown by a floating-zone method under ultralow oxygen partial pressure , 2005 .

[17]  Nguyen Q. Minh,et al.  Solid oxide fuel cell technology—features and applications , 2004 .

[18]  Guy Marin,et al.  Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+) , 2004 .

[19]  Seetharama C. Deevi,et al.  A review on the status of anode materials for solid oxide fuel cells , 2003 .

[20]  Hee Chun Lim,et al.  Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel , 2002 .

[21]  J. Santiso,et al.  Thin films of Sr2FeMoO6 grown by pulsed laser deposition: preparation and characterization , 2002 .

[22]  M. C. Viola,et al.  Induction of Colossal Magnetoresistance in the Double Perovskite Sr2CoMoO6 , 2002 .

[23]  S. Aruna,et al.  Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells , 1998 .

[24]  A. Katrib,et al.  Molybdenum based catalysts. I. MoO2 as the active species in the reforming of hydrocarbons , 1996 .

[25]  L. Thompson,et al.  XPS study of as-prepared and reduced molybdenum oxides , 1996 .

[26]  J. Bassat,et al.  SrVO3 and Sr2VO4, electrical properties below and above room T , 1995 .

[27]  N. McIntyre,et al.  Thermal reduction of molybdenum trioxide , 1992 .

[28]  M. Yamada,et al.  Distribution of molybdenum oxidation states in reduced molybdenum/alumina catalysts: correlation with benzene hydrogenation activity , 1990 .

[29]  Tetsuro Nakamura,et al.  Metallic conductivity in perovskite-type compounds AMoO3 (A = Ba, Sr, Ca) down to 2.5K , 1979 .

[30]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[31]  Hua-gui Zheng,et al.  A Simple Aqueous Mineralization Process to Synthesize Tetragonal Molybdate Microcrystallites , 2006 .

[32]  R. Mukundan,et al.  Sulfur Tolerant Anodes for SOFCs , 2004 .

[33]  D. P. Fagg,et al.  Stability and mixed ionic–electronic conductivity of (Sr,La)(Ti,Fe)O3−δ perovskites , 2003 .

[34]  W. Carrillo‐Cabrera,et al.  Crystal structure refinement of strontium tetraoxo-vanadate(V), Sr3(VO4)2 , 1993 .

[35]  M. Ürgen,et al.  ESCA measurements of films on molybdenum formed in the passive and transpassive region , 1990 .