Efficient Convex Optimization for Minimal Partition Problems with Volume Constraints

Minimal partition problems describe the task of partitioning a domain into a set of meaningful regions. Two important examples are image segmentation and 3D reconstruction. They can both be formulated as energy minimization problems requiring minimum boundary length or surface area of the regions. This common prior often leads to the removal of thin or elongated structures. Volume constraints impose an additional prior which can help preserve such structures. There exist a multitude of algorithms to minimize such convex functionals under convex constraints. We systematically compare the recent Primal Dual PD algorithm [1] to the Alternating Direction Method of Multipliers ADMM [2] on volume-constrained minimal partition problems. Our experiments indicate that the ADMM approach provides comparable and often better performance.

[1]  Jan-Michael Frahm,et al.  Fast Global Labeling for Real-Time Stereo Using Multiple Plane Sweeps , 2008, VMV.

[2]  Christoph Schnörr,et al.  Continuous Multiclass Labeling Approaches and Algorithms , 2011, SIAM J. Imaging Sci..

[3]  Daniel Cremers,et al.  An algorithm for minimizing the Mumford-Shah functional , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[4]  Horst Bischof,et al.  Interactive Multi-label Segmentation , 2010, ACCV.

[5]  Daniel Cremers,et al.  Spatially Varying Color Distributions for Interactive Multilabel Segmentation , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Daniel Cremers,et al.  TVSeg - Interactive Total Variation Based Image Segmentation , 2008, BMVC.

[7]  Daniel Cremers,et al.  A convex approach for computing minimal partitions , 2008 .

[8]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[9]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[10]  Ivo F. Sbalzarini,et al.  An alternating split Bregman algorithm for multi-region segmentation , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[11]  Daniel Cremers,et al.  Image-Based 3D Modeling via Cheeger Sets , 2010, ACCV.

[12]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[13]  Daniel Cremers,et al.  Anisotropic Minimal Surfaces Integrating Photoconsistency and Normal Information for Multiview Stereo , 2010, ECCV.

[14]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[15]  Gabriele Steidl,et al.  Convex multiclass segmentation with shearlet regularization , 2011, Int. J. Comput. Math..

[16]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[17]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[18]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[19]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[20]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[21]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[22]  Marc Niethammer,et al.  Segmentation with area constraints , 2012, Medical Image Analysis.

[23]  Radim Sára,et al.  A Weak Structure Model for Regular Pattern Recognition Applied to Facade Images , 2010, ACCV.