Quantum Thermodynamics in the Refined Weak Coupling Limit

We present a thermodynamic framework for the refined weak coupling limit. In this limit, the interaction between system and environment is weak, but not negligible. As a result, the system dynamics becomes non-Markovian breaking divisibility conditions. Nevertheless, we propose a derivation of the first and second law just in terms of the reduced system dynamics. To this end, we extend the refined weak coupling limit for allowing slowly-varying external drivings and reconsider the definition of internal energy due to the non-negligible interaction.

[1]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[2]  Gernot Schaller,et al.  Quantum and Information Thermodynamics: A Unifying Framework based on Repeated Interactions , 2016, 1610.01829.

[3]  K. Modi,et al.  Quantum thermodynamics of general quantum processes. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  E. Davies,et al.  Markovian master equations , 1974 .

[5]  Arun Kumar Pati,et al.  Exact master equation for a spin interacting with a spin bath: Non-Markovianity and negative entropy production rate , 2016, 1610.03895.

[6]  U. Seifert First and Second Law of Thermodynamics at Strong Coupling. , 2015, Physical review letters.

[7]  T. Brandes,et al.  Systematic perturbation theory for dynamical coarse-graining , 2008, 0812.1507.

[8]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[9]  M. Thoss,et al.  Thermodynamics of a subensemble of a canonical ensemble. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  R. Puri,et al.  Mathematical Methods of Quantum Optics , 2001 .

[11]  H. Spohn Entropy production for quantum dynamical semigroups , 1978 .

[12]  A. Rezakhani,et al.  Entropy production and non-Markovian dynamical maps , 2017, Scientific Reports.

[13]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2015, 1511.06994.

[14]  Bei-Lok Hu,et al.  Quantum Thermodynamics at Strong Coupling: Operator Thermodynamic Functions and Relations , 2018, Entropy.

[15]  Robert Cedergren,et al.  Guided tour , 1990, Nature.

[16]  Dariusz Chruscinski,et al.  A Brief History of the GKLS Equation , 2017, Open Syst. Inf. Dyn..

[17]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[18]  A. T. Rezakhani,et al.  Correlations in quantum thermodynamics: Heat, work, and entropy production , 2016, Scientific Reports.

[19]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[20]  Mark M. Wilde,et al.  Fundamental limits on quantum dynamics based on entropy change , 2017, 1707.06584.

[21]  M. Merkli,et al.  Completely positive dynamical semigroups and quantum resonance theory , 2016, 1601.00509.

[22]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[23]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[24]  Herbert Spohn,et al.  Open quantum systems with time-dependent Hamiltonians and their linear response , 1978 .

[25]  R. Alicki,et al.  Master equations for a damped nonlinear oscillator and the validity of the Markovian approximation. , 1989, Physical review. A, General physics.

[26]  G. Mahler,et al.  Quantum Thermodynamics: Emergence of Thermodynamic Behavior Within Composite Quantum Systems , 2005, quant-ph/0509110.

[27]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[28]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[29]  F. Benatti,et al.  Environment-induced entanglement in a refined weak-coupling limit , 2009, 0910.4021.

[30]  Herbert Spohn,et al.  Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs , 2007 .

[31]  R. F. Snider Perturbation Variation Methods for a Quantum Boltzmann Equation , 1964 .

[32]  Massimiliano Esposito,et al.  Entropy production as correlation between system and reservoir , 2009, 0908.1125.

[33]  Subhashis Banerjee,et al.  Thermodynamics of non-Markovian reservoirs and heat engines. , 2018, Physical review. E.

[34]  Y. Tanimura,et al.  Quantum heat current under non-perturbative and non-Markovian conditions: Applications to heat machines. , 2016, The Journal of chemical physics.

[35]  A. Uhlmann Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .

[36]  D. Reeb,et al.  Monotonicity of the Quantum Relative Entropy Under Positive Maps , 2015, 1512.06117.

[37]  Herbert Spohn,et al.  An algebraic condition for the approach to equilibrium of an open N-level system , 1977 .

[38]  Gershon Kurizki,et al.  Periodically driven quantum open systems: Tutorial , 2012, 1205.4552.

[39]  Susana F. Huelga,et al.  Open Quantum Systems: An Introduction , 2011, 1104.5242.

[40]  Susana F. Huelga,et al.  Markovian master equations: a critical study , 2010, 1006.4666.

[41]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[42]  Redfield reduced dynamics and entanglement , 2007, quant-ph/0701157.

[43]  'Angel Rivas Refined weak-coupling limit: Coherence, entanglement, and non-Markovianity , 2016, 1611.01483.

[44]  Slipped nonpositive reduced dynamics and entanglement , 2006, quant-ph/0607219.

[45]  M. Esposito,et al.  Non-Markovianity and negative entropy production rates. , 2018, Physical review. E.

[46]  Nonpositive evolutions in open system dynamics , 2003, quant-ph/0303027.

[47]  R. Wilcox Exponential Operators and Parameter Differentiation in Quantum Physics , 1967 .

[48]  T. Brandes,et al.  Preservation of positivity by dynamical coarse graining , 2008, 0804.2374.