fMRI protocol optimization for simultaneously studying small subcortical and cortical areas at 7 ​T

Most fundamental cognitive processes rely on brain networks that include both cortical and subcortical structures. Studying such networks using functional magnetic resonance imaging (fMRI) requires a data acquisition protocol that provides blood-oxygenation-level dependent (BOLD) sensitivity across the entire brain. However, when using standard single echo, echo planar imaging protocols, researchers face a tradeoff between BOLD-sensitivity in cortex and in subcortical areas. Multi echo protocols avoid this tradeoff and can be used to optimize BOLD-sensitivity across the entire brain, at the cost of an increased repetition time. Here, we empirically compare the BOLD-sensitivity of a single echo protocol to a multi echo protocol. Both protocols were designed to meet the specific requirements for studying small, iron rich subcortical structures (including a relatively high spatial resolution and short echo times), while retaining coverage and BOLD-sensitivity in cortical areas. The results indicate that both sequences lead to similar BOLD-sensitivity across the brain at 7 T.

[1]  Niels Hammer,et al.  Subthalamic nucleus volumes are highly consistent but decrease age‐dependently—a combined magnetic resonance imaging and stereology approach in humans , 2017, Human brain mapping.

[2]  B. Biswal,et al.  High‐resolution fMRI using multislice partial k‐space GR‐EPI with cubic voxels , 2001, Magnetic resonance in medicine.

[3]  Nikolaus Weiskopf,et al.  Maximising BOLD sensitivity through automated EPI protocol optimisation , 2019, NeuroImage.

[4]  M. D’Esposito,et al.  The variability of human BOLD hemodynamic responses , 1998, NeuroImage.

[5]  Robert Turner,et al.  Recent applications of UHF‐MRI in the study of human brain function and structure: a review , 2016, NMR in biomedicine.

[6]  Mark W. Woolrich,et al.  Multilevel linear modelling for FMRI group analysis using Bayesian inference , 2004, NeuroImage.

[7]  S. Posse,et al.  Enhancement of BOLD‐contrast sensitivity by single‐shot multi‐echo functional MR imaging , 1999, Magnetic resonance in medicine.

[8]  Robert Turner,et al.  Uncertainty and expectancy deviations require cortico-subcortical cooperation , 2017, NeuroImage.

[9]  Frederick Verbruggen,et al.  A consensus guide , 2019 .

[10]  Dan Wang,et al.  Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging. , 2014, Archives of gerontology and geriatrics.

[11]  Birte U. Forstmann,et al.  Towards a model-based cognitive neuroscience of stopping – a neuroimaging perspective , 2018, Neuroscience & Biobehavioral Reviews.

[12]  F. E. Satterthwaite Synthesis of variance , 1941 .

[13]  Nikolaus Weiskopf,et al.  The quest for the best: The impact of different EPI sequences on the sensitivity of random effect fMRI group analyses , 2016, NeuroImage.

[14]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[15]  Max C. Keuken,et al.  The Subcortical Cocktail Problem; Mixed Signals from the Subthalamic Nucleus and Substantia Nigra , 2015, PloS one.

[16]  Max C. Keuken,et al.  Towards a mechanistic understanding of the human subcortex , 2016, Nature Reviews Neuroscience.

[17]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[18]  B. Forstmann,et al.  Comparing functional MRI protocols for small, iron‐rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T , 2017, Human brain mapping.

[19]  Y. Benjamini,et al.  Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics , 1999 .

[20]  Mayur Narsude,et al.  Comparison of an 8-Channel and a 32-Channel Coil for High-Resolution fMRI at 7 T , 2013, Brain Topography.

[21]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[22]  L. Lenchik Functional imaging , 2007, Annals of Biomedical Engineering.

[23]  Anne C. Trutti,et al.  Effects of aging on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{1}$$\end{document}T1, \documentclass[12pt]{mini , 2017, Brain Structure and Function.

[24]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[25]  Hans Colonius,et al.  A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task , 2019, eLife.

[26]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[27]  Baxter P. Rogers,et al.  On the Origins of Signal Variance in FMRI of the Human Midbrain at High Field , 2013, PloS one.

[28]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Clyde,et al.  Mixtures of g Priors for Bayesian Variable Selection , 2008 .

[30]  Julia M. Huntenburg,et al.  Nighres: processing tools for high-resolution neuroimaging , 2018, GigaScience.

[31]  D. Larkman,et al.  Use of multicoil arrays for separation of signal from multiple slices simultaneously excited , 2001, Journal of magnetic resonance imaging : JMRI.

[32]  Rupert Lanzenberger,et al.  Influence of fMRI smoothing procedures on replicability of fine scale motor localization , 2005, NeuroImage.

[33]  Steen Moeller,et al.  Functional Sensitivity of 2D Simultaneous Multi-Slice Echo-Planar Imaging: Effects of Acceleration on g-factor and Physiological Noise , 2017, Front. Neurosci..

[34]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[35]  N WhiteCorey,et al.  Decomposing decision components in the stop-signal task , 2014 .

[36]  Karl J. Friston,et al.  Event-related fMRI , 1997 .

[37]  R. Poldrack,et al.  Cortical and Subcortical Contributions to Stop Signal Response Inhibition: Role of the Subthalamic Nucleus , 2006, The Journal of Neuroscience.

[38]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[39]  J. Rouder,et al.  Default Bayes Factors for Model Selection in Regression , 2012, Multivariate behavioral research.

[40]  D. Norris,et al.  BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI , 2006, Magnetic resonance in medicine.

[41]  Steen Moeller,et al.  Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project , 2013, NeuroImage.

[42]  Robert Turner,et al.  Echo Time Dependence of BOLD Contrast and Susceptibility Artifacts , 2001, NeuroImage.

[43]  Tipu Z. Aziz,et al.  The role of the subthalamic nucleus in response inhibition: Evidence from local field potential recordings in the human subthalamic nucleus , 2012, NeuroImage.

[44]  Richard Bowtell,et al.  T2* measurements in human brain at 1.5, 3 and 7 T. , 2007, Magnetic resonance imaging.

[45]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[46]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[47]  H. Jeffreys A Treatise on Probability , 1922, Nature.

[48]  T. Robbins,et al.  Inhibition and the right inferior frontal cortex: one decade on , 2014, Trends in Cognitive Sciences.

[49]  S. Petersen,et al.  Characterizing the Hemodynamic Response: Effects of Presentation Rate, Sampling Procedure, and the Possibility of Ordering Brain Activity Based on Relative Timing , 2000, NeuroImage.

[50]  Karl J. Friston,et al.  Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution , 2003, NeuroImage.

[51]  Russell A. Poldrack,et al.  Handbook of Functional MRI Data Analysis: Statistical modeling: Single subject analysis , 2011 .

[52]  E. Wagenmakers,et al.  A default Bayesian hypothesis test for correlations and partial correlations , 2012, Psychonomic bulletin & review.

[53]  R. Turner,et al.  Deficient approaches to human neuroimaging , 2014, Front. Hum. Neurosci..

[54]  Benedikt A. Poser,et al.  Investigating the benefits of multi-echo EPI for fMRI at 7 T , 2009, NeuroImage.

[55]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[56]  G. Logan,et al.  On the ability to inhibit simple and choice reaction time responses: a model and a method. , 1984, Journal of experimental psychology. Human perception and performance.

[57]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[58]  Rajita Sinha,et al.  Subcortical processes of motor response inhibition during a stop signal task , 2008, NeuroImage.

[59]  Wen-Ming Luh,et al.  Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI , 2012, NeuroImage.

[60]  Skipper Seabold,et al.  Statsmodels: Econometric and Statistical Modeling with Python , 2010, SciPy.

[61]  Steen Moeller,et al.  Evaluation of slice accelerations using multiband echo planar imaging at 3T , 2013, NeuroImage.

[62]  Bruce L. Booth,et al.  Quest for the best , 2003, Nature Reviews Drug Discovery.

[63]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[64]  J. Kenemans,et al.  A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: deficient inhibitory motor control? , 2005, Journal of abnormal psychology.

[65]  Russell A. Poldrack,et al.  Decomposing Decision Components in the Stop-signal Task: A Model-based Approach to Individual Differences in Inhibitory Control , 2014, Journal of Cognitive Neuroscience.

[66]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[67]  Yu Zhang,et al.  The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture , 2016, Cerebral cortex.

[68]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[69]  Robert Turner,et al.  Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2 ⁎-imaging at ultra-high magnetic field strength , 2013, NeuroImage.

[70]  R W Cox,et al.  Software tools for analysis and visualization of fMRI data , 1997, NMR in biomedicine.

[71]  T. Robbins,et al.  Inhibition and the right inferior frontal cortex , 2004, Trends in Cognitive Sciences.

[72]  Max C. Keuken,et al.  Quantifying inter-individual anatomical variability in the subcortex using 7T structural MRI , 2014, NeuroImage.

[73]  Christian Windischberger,et al.  Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations , 2016, Front. Neurosci..

[74]  Nikolaus Weiskopf,et al.  Single-shot compensation of image distortions and BOLD contrast optimization using multi-echo EPI for real-time fMRI , 2005, NeuroImage.

[75]  Rexford D. Newbould,et al.  A comprehensive evaluation of increasing temporal resolution with multiband-accelerated protocols and effects on statistical outcome measures in fMRI , 2018, NeuroImage.

[76]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[77]  D. Tank,et al.  4 Tesla gradient recalled echo characteristics of photic stimulation‐induced signal changes in the human primary visual cortex , 1993 .

[78]  Josef Pfeuffer,et al.  Isotropic submillimeter fMRI in the human brain at 7 T: Combining reduced field‐of‐view imaging and partially parallel acquisitions , 2012, Magnetic resonance in medicine.

[79]  Benedikt A. Poser,et al.  Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals , 2017, NeuroImage.

[80]  M. D’Esposito,et al.  The Effect of Normal Aging on the Coupling of Neural Activity to the Bold Hemodynamic Response , 1999, NeuroImage.

[81]  Valentin Riedl,et al.  Evaluation of Multiband EPI Acquisitions for Resting State fMRI , 2015, PloS one.

[82]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[83]  R Bowtell,et al.  Theoretical optimization of multi-echo fMRI data acquisition , 2007, Physics in medicine and biology.

[84]  Trevor W Robbins,et al.  Motor inhibition and cognitive flexibility in obsessive-compulsive disorder and trichotillomania. , 2006, The American journal of psychiatry.

[85]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[86]  David Bradley,et al.  Size and Shape Matter , 2014 .

[87]  J Hennig,et al.  Motion correction of parametric fMRI data from multi‐slice single‐shot multi‐echo acquisitions , 2001, Magnetic resonance in medicine.

[88]  C. Almli,et al.  Unbiased nonlinear average age-appropriate brain templates from birth to adulthood , 2009, NeuroImage.

[89]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.

[90]  Peter Börnert,et al.  Parallel magnetic resonance imaging , 2007, Neurotherapeutics.

[91]  Jia Liu,et al.  Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies , 2017, NeuroImage.

[92]  J Hennig,et al.  Functional Imaging by I0‐ and T2* ‐parameter mapping using multi‐image EPI , 1998, Magnetic resonance in medicine.

[93]  Wietske Zwaag,et al.  Whole brain measurements of the positive BOLD response variability during a finger tapping task at 7 T show regional differences in its profiles , 2018, Magnetic resonance in medicine.

[94]  Benedikt A. Poser,et al.  Using multi-echo simultaneous multi-slice (SMS) EPI to improve functional MRI of the subcortical nuclei of the basal ganglia at ultra-high field (7T) , 2017, NeuroImage.

[95]  J. de Houwer,et al.  Do emotional stimuli interfere with response inhibition? Evidence from the stop signal paradigm , 2007 .

[96]  Maria Grazia Bruzzone,et al.  Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. , 2009, Radiology.

[97]  Steen Moeller,et al.  Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts , 2016, NeuroImage.

[98]  Telman,et al.  UvA-DARE ( Digital Academic Repository ) Effects of aging on T 1 , T ∗ 2 , and QSM MRI values in the subcortex , 2017 .

[99]  Frank Schneider,et al.  Dependence of amygdala activation on echo time: Results from olfactory fMRI experiments , 2006, NeuroImage.

[100]  Tobias Kober,et al.  Robust T1-Weighted Structural Brain Imaging and Morphometry at 7T Using MP2RAGE , 2014, PloS one.

[101]  M. Rieger,et al.  Inhibition of ongoing responses in patients with Parkinson’s disease , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[102]  Pierre-Louis Bazin,et al.  Size and shape matter: The impact of voxel geometry on the identification of small nuclei , 2019, PloS one.

[103]  B. Forstmann,et al.  A gradual increase of iron toward the medial‐inferior tip of the subthalamic nucleus , 2014, Human brain mapping.

[104]  Rainer Goebel,et al.  A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T , 2016, PloS one.

[105]  Thomas V. Wiecki,et al.  A computational model of inhibitory control in frontal cortex and basal ganglia. , 2011, Psychological review.

[106]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.