Ultrafast light-induced THz switching in exchange-biased Fe/Pt spintronic heterostructure

The ultrafast optical control of magnetization in spintronic structures enables one to access to the high-speed information processing, approaching the realm of terahertz (THz). Femtosecond visible/near-infrared laser-driven ferromagnetic/nonmagnetic metallic spintronic heterostructures-based THz emitters combine the aspects from the ultrafast photo-induced dynamics and spin-charge inter-conversion mechanisms through the generation of THz electromagnetic pulses. In this Letter, we demonstrate photoexcitation density-dependent induced exchange-bias tunability and THz switching in an annealed Fe/Pt thin-film heterostructure, which otherwise is a widely used conventional spintronic THz emitter. By combining the exchange-bias effect along with THz emission, the photo-induced THz switching is observed without any applied magnetic field. These results pave the way for an all-optical ultrafast mechanism to exchange-bias tuning in spintronic devices for high-density storage, read/write magnetic memory applications.

[1]  Y. Kumar,et al.  Optical damage limit of efficient spintronic THz emitters , 2021, iScience.

[2]  R. Ji,et al.  Spintronic terahertz emitters: Status and prospects from a materials perspective , 2021, APL Materials.

[3]  E. Chia,et al.  Studying spin–charge conversion using terahertz pulses , 2021, APL Materials.

[4]  R. Rawat,et al.  Ultrafast Photo‐Thermal Switching of Terahertz Spin Currents , 2021, Advanced Functional Materials.

[5]  I. Mertig,et al.  Terahertz Spin‐to‐Charge Conversion by Interfacial Skew Scattering in Metallic Bilayers , 2021, Advanced materials.

[6]  A. Nivedan,et al.  THz pulses from optically excited Fe-, Pt- and Ta-based spintronic heterostructures , 2021, Pramana.

[7]  Hee Jun Shin,et al.  Universal field-tunable terahertz emission by ultrafast photoinduced demagnetization in Fe, Ni, and Co ferromagnetic films , 2020, Scientific Reports.

[8]  M. Gupta,et al.  Annealing driven positive and negative exchange bias in Fe–Cu–Pt heterostructures at room temperature , 2019, 1904.11270.

[9]  M. Battiato,et al.  Enhanced performance of spintronic terahertz emitters based on defect engineering , 2019, 1901.10011.

[10]  Mukul Gupta,et al.  Study of exchange bias effect in a patterned Fe/Pt multilayer with the thermal annealing , 2018 .

[11]  S. Mizukami,et al.  Annealing effect on laser pulse-induced THz wave emission in Ta/CoFeB/MgO films , 2017 .

[12]  E. Papaioannou,et al.  Optimized Spintronic Terahertz Emitters Based on Epitaxial Grown Fe/Pt Layer Structures , 2017, Scientific Reports.

[13]  G. Jakob,et al.  Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter , 2017, 1703.09970.

[14]  F. Pan,et al.  Recent progress in voltage control of magnetism: Materials, mechanisms, and performance , 2017, 1702.03730.

[15]  L. Abelmann,et al.  Temperature dependence of the energy barrier and switching field of sub-micron magnetic islands with perpendicular anisotropy , 2016, 1611.04980.

[16]  Ronger Zheng,et al.  Powerful and Tunable THz Emitters Based on the Fe/Pt Magnetic Heterostructure , 2016, 1607.02814.

[17]  M. Münzenberg,et al.  Perspective: Ultrafast magnetism and THz spintronics , 2016, 1606.08725.

[18]  V. Reddy,et al.  High resolution Kerr microscopy study of exchange bias phenomena in FePt/Fe exchange spring magnets , 2016, 1603.08164.

[19]  Jianping Wang,et al.  Observation and elimination of broken symmetry in L10 FePt nanostructures , 2015 .

[20]  M. Klaui,et al.  Efficient metallic spintronic emitters of ultrabroadband terahertz radiation , 2015, Nature Photonics.

[21]  S. Yusuf,et al.  Two interface effects: Exchange bias and magnetic proximity , 2014 .

[22]  F. Freimuth,et al.  Engineering ultrafast spin currents and terahertz transients by magnetic heterostructures , 2012, 1210.5372.

[23]  Wei-gang Wang,et al.  Electric-field-assisted switching in magnetic tunnel junctions. , 2012, Nature materials.

[24]  N. Sun,et al.  E‐Field Control of Exchange Bias and Deterministic Magnetization Switching in AFM/FM/FE Multiferroic Heterostructures , 2011 .

[25]  M D Rossell,et al.  Reversible electric control of exchange bias in a multiferroic field-effect device. , 2010, Nature materials.

[26]  R. Ramesh,et al.  Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures , 2010, Advanced materials.

[27]  Kazuhisa Sato Magnetic nanoparticles: When atoms move around. , 2009, Nature materials.

[28]  Eiji Saitoh,et al.  Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect , 2006 .

[29]  N. T. Nam,et al.  Coexistence of positive and negative exchange bias in CrMn/Co bilayers , 2006 .

[30]  J. Liu,et al.  High energy products in rapidly annealed nanoscale Fe/Pt multilayers , 1998 .

[31]  M. Kryder,et al.  Investigation of the exchange mechanism in NiFe‐TbCo bilayers , 1990 .

[32]  V. Reddy,et al.  Tuning exchange spring effects in FePt/Fe(Co) magnetic bilayers , 2012 .