Triggering the volume phase transition of core–shell Au nanorod–microgel nanocomposites with light

We have coated gold nanorods (NRs) with thermoresponsive microgel shells based on poly(N-isopropylacrylamide) (pNIPAM). We demonstrate by simultaneous laser-heating and optical extinction measurements that the Au NR cores can be simultaneously used as fast optothermal manipulators (switchers) and sensitive optical reporters of the microgel state in a fully externally controlled and reversible manner. We support our results with optical modeling based on the boundary element method and 3D numerical analysis on the temperature distribution. Briefly, we show that due to the sharp increase in refractive index resulting from the optothermally triggered microgel collapse, the longitudinal plasmon band of the coated Au NRs is significantly red-shifted. The optothermal control over the pNIPAM shell, and thereby over the optical response of the nanocomposite, is fully reversible and can be simply controlled by switching on and off a NIR heating laser. In contrast to bulk solution heating, we demonstrate that light-triggering does not compromise colloidal stability, which is of primary importance for the ultimate utilization of these types of nanocomposites as remotely controlled optomechanical actuators, for applications spanning from drug delivery to photonic crystals and nanoscale motion.

[1]  L. Liz‐Marzán,et al.  Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. , 2010, Chemistry.

[2]  G. Ozin,et al.  Fuel for thought: chemically powered nanomotors out-swim nature's flagellated bacteria. , 2010, ACS nano.

[3]  L. Liz‐Marzán,et al.  Catalysis by Au@pNIPAM Nanocomposites: Effect of the Cross-Linking Density , 2010 .

[4]  T. Klar,et al.  DNA Melting in Gold Nanostove Clusters , 2010 .

[5]  Rafael Contreras-Cáceres,et al.  Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth , 2009 .

[6]  A. Neogi,et al.  Oscillating magnetic field-actuated microvalves for micro- and nanofluidics , 2009 .

[7]  L. Lyon,et al.  Self-healing colloidal crystals. , 2009, Angewandte Chemie.

[8]  Yan Lu,et al.  Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles , 2009 .

[9]  A. Neogi,et al.  Refractive Index Change Due to Volume-Phase Transition in Polyacrylamide Gel Nanospheres for Optoelectronics and Bio-photonics , 2009 .

[10]  Andrey L. Rogach,et al.  Single gold nanostars enhance Raman scattering , 2009 .

[11]  Georgi Paschew,et al.  Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. , 2009, Lab on a chip.

[12]  Matthias Karg,et al.  Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and pH-tunable plasmon resonance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  T. Niidome,et al.  PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser. , 2009, Bioconjugate chemistry.

[14]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[15]  E. Kumacheva,et al.  Sequestering Gold Nanorods by Polymer Microgels , 2008 .

[16]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[17]  Matthias Karg,et al.  Encapsulation and Growth of Gold Nanoparticles in Thermoresponsive Microgels , 2008 .

[18]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[19]  G. Sukhorukov,et al.  Nanorods as Wavelength‐Selective Absorption Centers in the Visible and Near‐Infrared Regions of the Electromagnetic Spectrum , 2008 .

[20]  T. Klar,et al.  Gold nanostoves for microsecond DNA melting analysis. , 2008, Nano letters.

[21]  Matthias Karg,et al.  Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. , 2007, Small.

[22]  Yan Lu,et al.  Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core−Shell Microgels , 2007 .

[23]  E. Kumacheva,et al.  Microgels loaded with gold nanorods: photothermally triggered volume transitions under physiological conditions. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[24]  L. Lyon,et al.  1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. , 2006, Biomacromolecules.

[25]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[26]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[27]  Miguel A. Correa-Duarte,et al.  Composite Silica Spheres with Magnetic and Luminescent Functionalities , 2006 .

[28]  Hristina Petrova,et al.  On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. , 2006, Physical chemistry chemical physics : PCCP.

[29]  Yan Lu,et al.  Thermosensitive core-shell particles as carriers for ag nanoparticles: modulating the catalytic activity by a phase transition in networks. , 2006, Angewandte Chemie.

[30]  Philippe Guyot-Sionnest,et al.  Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. , 2005, The journal of physical chemistry. B.

[31]  E. Thomas,et al.  Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials , 2005, Advanced materials.

[32]  E. Kumacheva,et al.  Hybrid microgels photoresponsive in the near-infrared spectral range. , 2004, Journal of the American Chemical Society.

[33]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[34]  I. Hamley,et al.  Nanotechnology with soft materials. , 2003, Angewandte Chemie.

[35]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[36]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[37]  M. El-Sayed,et al.  Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions. , 2001, Journal of the American Chemical Society.

[38]  Valérie Cabuil,et al.  Designed Hybrid Organic−Inorganic Nanocomposites from Functional Nanobuilding Blocks , 2001 .

[39]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[40]  Sanford A. Asher,et al.  Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials , 1996, Science.

[41]  G. Deutscher,et al.  Surface melting enhanced by curvature effects , 1994 .

[42]  Robert Pelton,et al.  Preparation of aqueous latices with N-isopropylacrylamide , 1986 .

[43]  Shao-Tang Sun,et al.  Phase transitions in ionic gels , 1980 .

[44]  Toyoichi Tanaka,et al.  Kinetics of swelling of gels , 1979 .

[45]  Toyoichi Tanaka,et al.  Critical behavior of density fluctuations in gels , 1977 .

[46]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[47]  Luis M Liz-Marzán,et al.  Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. , 2009, Angewandte Chemie.

[48]  B. Vincent,et al.  Use of colloidal microgels for the absorption of heavy metal and other ions from aqueous solution , 1993 .