Conjoint Analysis for Evaluating Parameterized Gamut Mapping Algorithms

We show that conjoint analysis, a popular multi-attribute preference assessment technique used in market research, is a well suited tool to evaluate a multitude of gamut mapping algorithms simultaneously. Our analysis is based on data from psycho-visual tests assessed in a laboratory and in a web environment. Conjoint analysis allows us to quantify the contribution of every single parameter value to the perceived value of the algorithm; it also allows us to test the influence of additional parameters like gamut size or color shifts. We show that conjoint analysis can be individualized to images or observers if enough data is available. Especially promising in this respect is the combination of individual and population data.

[1]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[2]  Peter Zolliker,et al.  Retaining Local Image Information in Gamut Mapping Algorithms , 2007, IEEE Transactions on Image Processing.

[3]  Ethan D. Montag,et al.  Empirical formula for creating error bars for the method of paired comparison , 2006, J. Electronic Imaging.

[4]  H. Gulliksen A least squares solution for paired comparisons with incomplete data , 1956 .

[5]  Peter Zolliker,et al.  Continuity of gamut mapping algorithms , 2006, J. Electronic Imaging.

[6]  Carlo Gatta,et al.  A Multiscale Framework for Spatial Gamut Mapping , 2007, IEEE Transactions on Image Processing.

[7]  Michael Elad,et al.  Space-dependent color gamut mapping: a variational approach , 2005, IEEE Transactions on Image Processing.

[8]  Yu Wang,et al.  A Multi-Resolution, Full-Colour Spatial Gamut Mapping Algorithm , 2003, Color Imaging Conference.

[9]  J H MORRISSEY,et al.  New method for the assignment of psychometric scale values from incomplete paired comparisons. , 1955, Journal of the Optical Society of America.

[10]  L. Thurstone A law of comparative judgment. , 1994 .

[11]  F. Mosteller,et al.  Remarks on the method of paired comparisons: III. A test of significance for paired comparisons when equal standard deviations and equal correlations are assumed , 1951, Psychometrika.

[12]  Peter Zolliker,et al.  Image-Dependent Gamut Mapping as Optimization Problem , 2007, IEEE Transactions on Image Processing.

[13]  Klaus Mueller,et al.  Choice Based Conjoint Analysis: Discrete Choice Models vs. Direct Regression , 2008 .

[14]  Hiroaki Kotera,et al.  Compact description of 3-D image gamut by r-image method , 2003, J. Electronic Imaging.

[15]  Peter G. Engeldrum,et al.  Psychometric Scaling: A Toolkit for Imaging Systems Development , 2000 .

[16]  Peter Zolliker,et al.  Web-based psychometric evaluation of image quality , 2009, Electronic Imaging.

[17]  Nicolas Bonnier,et al.  Spatial and Color Adaptive Gamut Mapping: A Mathematical Framework and Two New Algorithms , 2007, CIC.

[18]  Jn Morovi,et al.  Color Gamut Mapping , 2008 .

[19]  Peter Zolliker,et al.  Conjoint Analysis of Parametrized Gamut Mapping Algorithms , 2008, Color Imaging Conference.

[20]  Klaus Mueller,et al.  Conjoint Analysis to Measure the Perceived Quality in Volume Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[21]  J. Falmagne Elements of psychophysical theory , 1985 .

[22]  Raymond H. Hohle,et al.  An empirical evaluation and comparison of two models for discriminability scales , 1966 .

[23]  Byoung-Ho Kang,et al.  Gamut Compression Algorithm Development on the Basis of Observer Experimental Data , 2000, Color Imaging Conference.

[24]  J. Edward Jackson,et al.  An Evaluation of Some Statistical Techniques Used in the Analysis of Paired Comparison Data , 1957 .

[25]  Jon Yngve Hardeberg,et al.  Perceptual evaluation of color gamut mapping algorithms , 2008 .

[26]  Nicolas Bonnier,et al.  Improvements in Spatial and Color Adaptive Gamut Mapping Algorithms , 2008, CGIV/MCS.

[27]  Mark D. Fairchild,et al.  Development and Testing of a Color Space (IPT) with Improved Hue Uniformity , 1998, CIC.