Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer's disease brain

[1]  P. Nelson,et al.  The Mitochondria-Associated ER Membranes Are Novel Subcellular Locations Enriched for Inflammatory-Responsive MicroRNAs , 2020, Molecular Neurobiology.

[2]  W. Noble,et al.  Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer’s disease and regulates axonal transport and processing of the amyloid precursor protein , 2019, Acta Neuropathologica Communications.

[3]  T. Wisniewski,et al.  Perturbed mitochondria–ER contacts in live neurons that model the amyloid pathology of Alzheimer's disease , 2019, Journal of Cell Science.

[4]  A. Konnerth,et al.  Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity , 2019, Nature Neuroscience.

[5]  M. Brini,et al.  splitGFP Technology Reveals Dose-Dependent ER-Mitochondria Interface Modulation by α-Synuclein A53T and A30P Mutants , 2019, Cells.

[6]  A. Zorzano,et al.  Metabolic implications of organelle–mitochondria communication , 2019, EMBO reports.

[7]  K. Mikoshiba,et al.  IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer , 2019, Nature Communications.

[8]  Z. Sheng,et al.  Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts , 2019, Nature Communications.

[9]  Teruo Hayashi The Sigma-1 Receptor in Cellular Stress Signaling , 2019, Front. Neurosci..

[10]  Eleanor D. Robinson,et al.  LMTK2 binds to kinesin light chains to mediate anterograde axonal transport of cdk5/p35 and LMTK2 levels are reduced in Alzheimer’s disease brains , 2019, Acta Neuropathologica Communications.

[11]  W. Noble,et al.  The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity , 2019, Acta neuropathologica communications.

[12]  M. Hiltunen,et al.  Alterations in mitochondria-endoplasmic reticulum connectivity in human brain biopsies from idiopathic normal pressure hydrocephalus patients , 2018, Acta Neuropathologica Communications.

[13]  J. Lippincott-Schwartz,et al.  Interacting organelles. , 2018, Current opinion in cell biology.

[14]  G. Hajnóczky,et al.  Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. , 2018, Trends in cell biology.

[15]  Christopher C. J. Miller,et al.  Disruption of ER−mitochondria signalling in fronto-temporal dementia and related amyotrophic lateral sclerosis , 2018, Cell Death & Disease.

[16]  E. Schon,et al.  A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease , 2018, Cell Death & Disease.

[17]  Yusuke Hirabayashi,et al.  ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons , 2017, Science.

[18]  E. Schon,et al.  Increased localization of APP‐C99 in mitochondria‐associated ER membranes causes mitochondrial dysfunction in Alzheimer disease , 2017, The EMBO journal.

[19]  B. Winblad,et al.  APP mouse models for Alzheimer's disease preclinical studies , 2017, The EMBO journal.

[20]  J. Rieusset Mitochondria-associated membranes (MAMs): An emerging platform connecting energy and immune sensing to metabolic flexibility. , 2017, Biochemical and biophysical research communications.

[21]  Michael J. Devine,et al.  α-Synuclein binds to the ER–mitochondria tethering protein VAPB to disrupt Ca2+ homeostasis and mitochondrial ATP production , 2017, Acta Neuropathologica.

[22]  W. Noble,et al.  The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy , 2017, Current Biology.

[23]  F. Checler,et al.  Localization and Processing of the Amyloid-β Protein Precursor in Mitochondria-Associated Membranes , 2016, Journal of Alzheimer's disease : JAD.

[24]  H. Kiyama,et al.  Mitochondria‐associated membrane collapse is a common pathomechanism in SIGMAR1‐ and SOD1‐linked ALS , 2016, EMBO molecular medicine.

[25]  S. Pulst,et al.  Cellular and circuit mechanisms underlying spinocerebellar ataxias , 2016, The Journal of physiology.

[26]  T. Hortobágyi,et al.  Alzheimer-related decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss , 2016, Brain : a journal of neurology.

[27]  C. Shaw,et al.  ALS/FTD‐associated FUS activates GSK‐3β to disrupt the VAPB–PTPIP51 interaction and ER–mitochondria associations , 2016, EMBO reports.

[28]  W. Noble,et al.  Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer’s disease , 2016, Acta neuropathologica communications.

[29]  Shang-Yi Tsai,et al.  The Sigma-1 Receptor as a Pluripotent Modulator in Living Systems. , 2016, Trends in pharmacological sciences.

[30]  Matthew A. Wade,et al.  Upregulation of calpain activity precedes tau phosphorylation and loss of synaptic proteins in Alzheimer’s disease brain , 2016, Acta Neuropathologica Communications.

[31]  Christopher C. J. Miller,et al.  There's Something Wrong with my MAM; the ER–Mitochondria Axis and Neurodegenerative Diseases , 2016, Trends in Neurosciences.

[32]  Colleen J. Thomas,et al.  The Unfolded Protein Response and the Role of Protein Disulfide Isomerase in Neurodegeneration , 2016, Front. Cell Dev. Biol..

[33]  B. Asselbergh,et al.  Mitochondria-associated membranes as hubs for neurodegeneration , 2016, Acta Neuropathologica.

[34]  E. Schon,et al.  ApoE4 upregulates the activity of mitochondria‐associated ER membranes , 2015, EMBO reports.

[35]  A. Palmeri,et al.  Rodent models for Alzheimer’s disease drug discovery , 2015, Expert opinion on drug discovery.

[36]  R. Chrast,et al.  Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. , 2015, Brain : a journal of neurology.

[37]  T. Hortobágyi,et al.  Evidence that the presynaptic vesicle protein CSPalpha is a key player in synaptic degeneration and protection in Alzheimer’s disease , 2015, Molecular Brain.

[38]  M. Ankarcrona,et al.  Amyloid-β peptides are generated in mitochondria-associated endoplasmic reticulum membranes. , 2014, Journal of Alzheimer's disease : JAD.

[39]  L. Petrucelli,et al.  ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43 , 2014, Nature Communications.

[40]  I. Ferrer,et al.  Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. , 2014, The Journal of clinical investigation.

[41]  B. Winblad,et al.  Modulation of the endoplasmic reticulum–mitochondria interface in Alzheimer’s disease and related models , 2013, Proceedings of the National Academy of Sciences.

[42]  C. Troakes,et al.  Prostate-derived Sterile 20-like Kinases (PSKs/TAOKs) Phosphorylate Tau Protein and Are Activated in Tangle-bearing Neurons in Alzheimer Disease* , 2013, The Journal of Biological Chemistry.

[43]  G. Voeltz,et al.  Endoplasmic reticulum–mitochondria contacts: function of the junction , 2012, Nature Reviews Molecular Cell Biology.

[44]  E. Schon,et al.  Upregulated function of mitochondria-associated ER membranes in Alzheimer disease , 2012, The EMBO journal.

[45]  J. Foskett,et al.  Mitochondrial Ca(2+) signals in autophagy. , 2012, Cell calcium.

[46]  G. Schellenberg,et al.  The genetics and neuropathology of Alzheimer’s disease , 2012, Acta Neuropathologica.

[47]  Bente Pakkenberg,et al.  Stereological quantification of the cerebellum in patients with Alzheimer's disease , 2012, Neurobiology of Aging.

[48]  Kristopher L. Nazor,et al.  Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells , 2012, Nature.

[49]  C. Shaw,et al.  VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis , 2011, Human molecular genetics.

[50]  M. Bortolozzi,et al.  Presenilin 2 modulates endoplasmic reticulum (ER)–mitochondria interactions and Ca2+ cross-talk , 2011, Proceedings of the National Academy of Sciences.

[51]  E. Schon,et al.  Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. , 2009, The American journal of pathology.

[52]  P. Pinton,et al.  Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells , 2009, Nature Protocols.

[53]  Simon Lovestone,et al.  The GSK3 hypothesis of Alzheimer's disease , 2008, Journal of neurochemistry.

[54]  K. Leroy,et al.  Increased level of active GSK‐3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration , 2007, Neuropathology and applied neurobiology.

[55]  U. Landegren,et al.  Direct observation of individual endogenous protein complexes in situ by proximity ligation , 2006, Nature Methods.

[56]  Anthony Holland,et al.  Increased MAP kinase activity in Alzheimer's and Down syndrome but not in schizophrenia human brain , 2004, The European journal of neuroscience.

[57]  I. Ferrer,et al.  Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration , 2002, Acta Neuropathologica.

[58]  S. Snyder,et al.  Differential cellular expression of isoforms of inositol 1,4,5‐triphosphate receptors in neurons and glia in brain , 1999, The Journal of comparative neurology.

[59]  D. Mann,et al.  Pyramidal nerve cell loss in Alzheimer's disease. , 1996, Neurodegeneration : a journal for neurodegenerative disorders, neuroprotection, and neuroregeneration.

[60]  Simon Lovestone,et al.  Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells , 1994, Current Biology.

[61]  M. Bootman,et al.  Determination of relative amounts of inositol trisphosphate receptor mRNA isoforms by ratio polymerase chain reaction. , 1994, The Journal of biological chemistry.