A New Class of Interpolatory L-Splines with Adjoint End Conditions
暂无分享,去创建一个
[1] Roberto Cavoretto,et al. An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels , 2014, Numerical Algorithms.
[2] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[3] Jean Duchon,et al. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .
[4] J. Pierce,et al. On spline functions determined by singular self-adjoint differential operators☆ , 1972 .
[5] Nira Dyn,et al. Bivariate interpolation based on univariate subdivision schemes , 2012, J. Approx. Theory.
[6] A. Bejancu. Transfinite Thin Plate Spline Interpolation , 2009, 0910.1507.
[7] Aurelian Bejancu,et al. Semi-cardinal polyspline interpolation with Beppo Levi boundary conditions , 2008, Journal of Approximation Theory.
[8] Robert Schaback,et al. Generalized Whittle–Matérn and polyharmonic kernels , 2013, Adv. Comput. Math..
[9] A. Bejancu. Thin Plate Splines for Transfinite Interpolation at Concentric Circles , 2013 .
[10] A generalization ofL-splines , 1970 .
[11] Larry L. Schumaker,et al. Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.
[12] L. Schumaker. On Tchebycheffian spline functions , 1976 .
[13] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[14] Samuel Karlin,et al. Chebyshevian Spline Functions , 1966 .
[15] C. Bennett,et al. Interpolation of operators , 1987 .
[16] R. Varga,et al. L-Splines , 1967 .
[17] J. L. Walsh,et al. The theory of splines and their applications , 1969 .
[18] Ognyan Kounchev,et al. The approximation order of polysplines , 2003 .
[19] Ognyan Kounchev,et al. Multivariate Polysplines: Applications to Numerical and Wavelet Analysis , 2001 .
[20] C. Rabut. Interpolation with radially symmetric thin plate splines , 1996 .
[21] Aurelian Bejancu,et al. Radially symmetric thin plate splines interpolating a circular contour map , 2014, J. Comput. Appl. Math..
[22] Ognyan Kounchev,et al. Cardinal interpolation with polysplines on annuli , 2005, J. Approx. Theory.