A New Class of Interpolatory L-Splines with Adjoint End Conditions

A thin plate spline for interpolation of smooth transfinite data prescribed along concentric circles was recently proposed by Bejancu, using Kounchev’s polyspline method. The construction of the new ‘Beppo Levi polyspline’ surface reduces, via separation of variables, to that of a countable family of univariate L-splines, indexed by the frequency integer k. This paper establishes the existence, uniqueness and variational properties of the ‘Beppo Levi L-spline’ schemes corresponding to non-zero frequencies k. In this case, the resulting L-spline end conditions are formulated in terms of adjoint differential operators, unlike the usual ‘natural’ L-spline end conditions, which employ identical operators at both ends. Our L-spline error analysis leads to an \(L^{2}\)-error bound for transfinite surface interpolation with Beppo Levi polysplines.

[1]  Roberto Cavoretto,et al.  An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels , 2014, Numerical Algorithms.

[2]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[3]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[4]  J. Pierce,et al.  On spline functions determined by singular self-adjoint differential operators☆ , 1972 .

[5]  Nira Dyn,et al.  Bivariate interpolation based on univariate subdivision schemes , 2012, J. Approx. Theory.

[6]  A. Bejancu Transfinite Thin Plate Spline Interpolation , 2009, 0910.1507.

[7]  Aurelian Bejancu,et al.  Semi-cardinal polyspline interpolation with Beppo Levi boundary conditions , 2008, Journal of Approximation Theory.

[8]  Robert Schaback,et al.  Generalized Whittle–Matérn and polyharmonic kernels , 2013, Adv. Comput. Math..

[9]  A. Bejancu Thin Plate Splines for Transfinite Interpolation at Concentric Circles , 2013 .

[10]  A generalization ofL-splines , 1970 .

[11]  Larry L. Schumaker,et al.  Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.

[12]  L. Schumaker On Tchebycheffian spline functions , 1976 .

[13]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[14]  Samuel Karlin,et al.  Chebyshevian Spline Functions , 1966 .

[15]  C. Bennett,et al.  Interpolation of operators , 1987 .

[16]  R. Varga,et al.  L-Splines , 1967 .

[17]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[18]  Ognyan Kounchev,et al.  The approximation order of polysplines , 2003 .

[19]  Ognyan Kounchev,et al.  Multivariate Polysplines: Applications to Numerical and Wavelet Analysis , 2001 .

[20]  C. Rabut Interpolation with radially symmetric thin plate splines , 1996 .

[21]  Aurelian Bejancu,et al.  Radially symmetric thin plate splines interpolating a circular contour map , 2014, J. Comput. Appl. Math..

[22]  Ognyan Kounchev,et al.  Cardinal interpolation with polysplines on annuli , 2005, J. Approx. Theory.