Monads on dagger categories
暂无分享,去创建一个
[1] Peter Selinger,et al. Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.
[2] Harvey Wolff,et al. Monads and monoids on symmetric monoidal closed categories , 1973 .
[3] Alexis De Vos,et al. Matrix Calculus for Classical and Quantum Circuits , 2014, JETC.
[4] Bart Jacobs,et al. Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.
[5] Ross Street,et al. Frobenius monads and pseudomonoids , 2004 .
[6] Sean Tull,et al. Categories of relations as models of quantum theory , 2015, ArXiv.
[7] T. Heinosaari,et al. The Mathematical Language of Quantum Theory , 2012 .
[8] Aaron D. Lauda. FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS , 2005 .
[9] Chris Heunen,et al. Reversible Monadic Computing , 2015, MFPS.
[10] Robin Kaarsgaard,et al. Join Inverse Categories as Models of Reversible Recursion , 2016, FoSSaCS.
[11] Andrej Bauer,et al. Homotopy Type Theory: Univalent Foundations of Mathematics , 2013, ArXiv.
[12] Dusko Pavlovic,et al. Geometry of abstraction in quantum computation , 2010, Classical and Quantum Information Assurance Foundations and Practice.
[13] C. E. Watts. Intrinsic characterizations of some additive functors , 1960 .
[15] Chris Heunen,et al. An embedding theorem for Hilbert categories , 2008, 0811.1448.
[16] Chris Heunen,et al. Relative Frobenius algebras are groupoids , 2011, 1112.1284.
[17] Bart Jacobs,et al. Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..
[18] A. Kock. Strong functors and monoidal monads , 1972 .
[19] B. Torrecillas,et al. On Frobenius and separable algebra extensions in monoidal categories. Applications to wreaths , 2013, 1303.0802.
[20] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[21] Dominic R. Verity,et al. ∞-Categories for the Working Mathematician , 2018 .
[22] Dusko Pavlovic,et al. Quantum measurements without sums , 2007 .
[23] J. Vicary. Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.
[24] Bart Jacobs,et al. Involutive Categories and Monoids, with a GNS-Correspondence , 2010, ArXiv.
[25] Benoît Valiron,et al. A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.
[26] Bart Jacobs. Coalgebraic Walks, in Quantum and Turing Computation , 2011, FoSSaCS.
[27] Jamie Vicary,et al. Categorical Formulation of Quantum Algebras , 2008 .
[28] Jamie Vicary,et al. Completeness of dagger-categories and the complex numbers , 2008, 0807.2927.