Monads on dagger categories

The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when everything respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so-called Frobenius law. Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleisli and Frobenius-Eilenberg-Moore algebras, which again have a dagger. We characterize the Frobenius law as a coherence property between dagger and closure, and characterize strong such monads as being induced by Frobenius monoids.

[1]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[2]  Harvey Wolff,et al.  Monads and monoids on symmetric monoidal closed categories , 1973 .

[3]  Alexis De Vos,et al.  Matrix Calculus for Classical and Quantum Circuits , 2014, JETC.

[4]  Bart Jacobs,et al.  Quantum Logic in Dagger Kernel Categories , 2009, QPL@MFPS.

[5]  Ross Street,et al.  Frobenius monads and pseudomonoids , 2004 .

[6]  Sean Tull,et al.  Categories of relations as models of quantum theory , 2015, ArXiv.

[7]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory , 2012 .

[8]  Aaron D. Lauda FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS , 2005 .

[9]  Chris Heunen,et al.  Reversible Monadic Computing , 2015, MFPS.

[10]  Robin Kaarsgaard,et al.  Join Inverse Categories as Models of Reversible Recursion , 2016, FoSSaCS.

[11]  Andrej Bauer,et al.  Homotopy Type Theory: Univalent Foundations of Mathematics , 2013, ArXiv.

[12]  Dusko Pavlovic,et al.  Geometry of abstraction in quantum computation , 2010, Classical and Quantum Information Assurance Foundations and Practice.

[13]  C. E. Watts Intrinsic characterizations of some additive functors , 1960 .

[14]  This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivs 3.0 Licence. To view a copy of the licence please see: http://creativecommons.0rg/licenses/by-nc-nd/3.0/ INEQIMTES IN THE DELIVERY OF SERVICES TO A FEMALE FARM CLIENTELE: SOME~~ , 2010 .

[15]  Chris Heunen,et al.  An embedding theorem for Hilbert categories , 2008, 0811.1448.

[16]  Chris Heunen,et al.  Relative Frobenius algebras are groupoids , 2011, 1112.1284.

[17]  Bart Jacobs,et al.  Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..

[18]  A. Kock Strong functors and monoidal monads , 1972 .

[19]  B. Torrecillas,et al.  On Frobenius and separable algebra extensions in monoidal categories. Applications to wreaths , 2013, 1303.0802.

[20]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[21]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[22]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[23]  J. Vicary Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.

[24]  Bart Jacobs,et al.  Involutive Categories and Monoids, with a GNS-Correspondence , 2010, ArXiv.

[25]  Benoît Valiron,et al.  A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.

[26]  Bart Jacobs Coalgebraic Walks, in Quantum and Turing Computation , 2011, FoSSaCS.

[27]  Jamie Vicary,et al.  Categorical Formulation of Quantum Algebras , 2008 .

[28]  Jamie Vicary,et al.  Completeness of dagger-categories and the complex numbers , 2008, 0807.2927.