Discontinuous control-volume/finite-element method for advection–diffusion problems

Abstract The discontinuous control-volume/finite-element method is applied to the one-dimensional advection–diffusion equation. The aforementioned methodology is relatively novel and has been mainly applied for the solution of pure-advection problems. This work focuses on the main features of an accurate representation of the diffusion operator, which are investigated both by Fourier analysis and numerical experiments. A mixed formulation is followed, where the constitutive equation for the diffusive flux is not substituted into the conservation equation for the transported scalar. The Fourier analysis of a linear, diffusion problem shows that the resolution error is both dispersive and dissipative, in contrast with the purely dissipative error of the traditional continuous Galerkin approximation.

[1]  M. Iskandarani,et al.  A spectral finite-volume method for the shallow water equations , 2004 .

[2]  Mario J. Martinez,et al.  Comparison of Galerkin and control volume finite element for advection–diffusion problems , 2006 .

[3]  P. Roache Fundamentals of computational fluid dynamics , 1998 .

[4]  Zhi J. Wang,et al.  Extension of the spectral volume method to high-order boundary representation , 2006 .

[5]  Mengping Zhang,et al.  AN ANALYSIS OF THREE DIFFERENT FORMULATIONS OF THE DISCONTINUOUS GALERKIN METHOD FOR DIFFUSION EQUATIONS , 2003 .

[6]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[7]  George Em Karniadakis,et al.  A spectral element-FCT method for the compressible Euler equations , 1994 .

[8]  Zhi Jian Wang,et al.  LDG2: A Variant of the LDG Flux Formulation for the Spectral Volume Method , 2011, J. Sci. Comput..

[9]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[10]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[11]  R. Kannan,et al.  A Study of Viscous Flux Formulations for a p-Multigrid Spectral Volume Navier Stokes Solver , 2009, J. Sci. Comput..

[12]  Ben Q. Li Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer , 2005 .

[13]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[14]  Zhi J. Wang,et al.  Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems , 2004 .

[15]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[16]  George Em Karniadakis,et al.  Spectral element‐FCT method for scalar hyperbolic conservation laws , 1992 .

[17]  M. Iskandarani,et al.  Comparison of advection schemes for high-order h–p finite element and finite volume methods , 2005 .

[18]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[19]  B. R. Baliga,et al.  A NEW FINITE-ELEMENT FORMULATION FOR CONVECTION-DIFFUSION PROBLEMS , 1980 .

[20]  J. Banaszek Comparison of Control Volume and Galerkin Finite Element Methods for Diffusion-Type Problems , 1990 .

[21]  Eli Turkel,et al.  An implicit high-order spectral difference approach for large eddy simulation , 2010, J. Comput. Phys..

[22]  Gerry E. Schneider,et al.  A SKEWED, POSITIVE INFLUENCE COEFFICIENT UPWINDING PROCEDURE FOR CONTROL-VOLUME-BASED FINITE-ELEMENT CONVECTION-DIFFUSION COMPUTATION , 1986 .

[23]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[24]  R. Taylor The Finite Element Method, the Basis , 2000 .

[25]  Marcel Vinokur,et al.  Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..

[26]  George Em Karniadakis,et al.  Spectral element-FCT method for the one- and two-dimensional compressible Euler equations , 1994 .

[27]  Philip J. Rasch,et al.  Upwind‐weighted advection schemes for ocean tracer transport: An evaluation in a passive tracer context , 1995 .

[28]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[29]  Zhi Jian Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids III: One Dimensional Systems and Partition Optimization , 2004, J. Sci. Comput..

[30]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[31]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[32]  Jue Yan,et al.  THE DIRECT DISCONTINUOUS GALERKIN (DDG) METHOD FOR DIFFUSION WITH INTERFACE CORRECTIONS , 2010 .

[33]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[34]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[35]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[36]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[37]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .

[38]  Yuzhi Sun,et al.  Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..

[39]  Marcel Vinokur,et al.  Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems , 2006, J. Comput. Phys..

[40]  M. Y. Hussaini,et al.  An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems , 1999 .

[41]  Christian Masson,et al.  Co‐located equal‐order control‐volume finite element method for two‐dimensional axisymmetric incompressible fluid flow , 1994 .

[42]  Chris Lacor,et al.  Dispersion and dissipation properties of the 1D spectral volume method and application to a p-multigrid algorithm , 2007, J. Comput. Phys..

[43]  Bram van Leer,et al.  A Discontinuous Galerkin Method for Diffusion Based on Recovery , 2007 .

[44]  Hailiang Liu,et al.  The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems , 2008, SIAM J. Numer. Anal..

[45]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[46]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[47]  Chris Lacor,et al.  On the connection between the spectral volume and the spectral difference method , 2007, J. Comput. Phys..

[48]  I. Babuska,et al.  Nonconforming Elements in the Finite Element Method with Penalty , 1973 .

[49]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[50]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[51]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[52]  James S. Walker Fast Fourier Transforms , 1991 .

[53]  Long Chen FINITE ELEMENT METHOD , 2013 .

[54]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[55]  J. Gosling,et al.  Magnetic clouds at sector boundaries , 1998 .

[56]  Zhi J. Wang,et al.  The direct discontinuous Galerkin (DDG) viscous flux scheme for the high order spectral volume method , 2010 .

[57]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[58]  Chi-Wang Shu,et al.  Different Formulations Of The Discontinuous Galerkin Method For The Viscous Terms , 2000 .

[59]  Stability of penalty finite-element methods for nonconforming problems , 1986 .