Hyperdimensional utterance spaces

Human language has a large and varying number of features, both lexical items and constructions, which interact to represent various aspects of communicative information. High-dimensional semantic ...

[1]  Magnus Sahlgren,et al.  The Word-Space Model: using distributional analysis to represent syntagmatic and paradigmatic relations between words in high-dimensional vector spaces , 2006 .

[2]  P. Kanerva,et al.  Permutations as a means to encode order in word space , 2008 .

[3]  Pentti Kanerva,et al.  Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors , 2009, Cognitive Computation.

[4]  Tony A. Plate,et al.  Holographic reduced representations , 1995, IEEE Trans. Neural Networks.

[5]  R. L. Goodstein,et al.  Mathematical Structures of Language. By Zellig Harris. Interscience Tracts No. 21. Pp. 230. 1969. (Interscience Publishers, New York and London.) , 1970 .

[6]  Tony A. Plate,et al.  Holographic Reduced Representation: Distributed Representation for Cognitive Structures , 2003 .

[7]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[8]  Aditya Joshi,et al.  Language Geometry Using Random Indexing , 2016, QI.

[9]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[10]  Anders Holst,et al.  Random indexing of text samples for latent semantic analysis , 2000 .

[11]  Ross W. Gayler Vector Symbolic Architectures answer Jackendoff's challenges for cognitive neuroscience , 2004, ArXiv.

[12]  Magnus Sahlgren,et al.  Random indexing of multidimensional data , 2017, Knowledge and Information Systems.

[13]  Dan Roth,et al.  Learning Question Classifiers , 2002, COLING.

[14]  Magnus Sahlgren,et al.  The Distributional Hypothesis , 2008 .