Techniques for investigating lncRNA transcript functions in neurodevelopment

[1]  S. Guil,et al.  Roles of lncRNAs in brain development and pathogenesis: Emerging therapeutic opportunities , 2023, Molecular therapy : the journal of the American Society of Gene Therapy.

[2]  Z. Xiong,et al.  A high-fidelity RNA-targeting Cas13 restores paternal Ube3a expression and improves motor functions in Angelman Syndrome mice. , 2023, Molecular therapy : the journal of the American Society of Gene Therapy.

[3]  J. Howe,et al.  Disruption of DDX53 coding sequence has limited impact on iPSC-derived human NGN2 neurons , 2023, BMC Medical Genomics.

[4]  S. Preibisch,et al.  Best practice standards for circular RNA research , 2022, Nature Methods.

[5]  O. Mortusewicz,et al.  Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK , 2022, Nature communications.

[6]  J. Rinn,et al.  From genotype to phenotype: genetics of mammalian long non-coding RNAs in vivo , 2021, Nature Reviews Genetics.

[7]  T. Wong,et al.  Targeting genetic tool for long non-coding RNA of cancer stem cells with aptamer-guided nanocarriers , 2021, Expert opinion on drug delivery.

[8]  Guohai Xu,et al.  LncRNA 4344 promotes NLRP3-related neuroinflammation and cognitive impairment by targeting miR‐138-5p , 2021, Brain, Behavior, and Immunity.

[9]  P. Vivas-Mejia,et al.  Targeting Non-coding RNA for Glioblastoma Therapy: The Challenge of Overcomes the Blood-Brain Barrier , 2021, Frontiers in Medical Technology.

[10]  Jun Zhang,et al.  Knockout of circRNAs by base editing back-splice sites of circularized exons , 2021, Genome Biology.

[11]  G. Barreto,et al.  The Emerging Role of Long Non-Coding RNAs and MicroRNAs in Neurodegenerative Diseases: A Perspective of Machine Learning , 2021, Biomolecules.

[12]  M. Fabbri,et al.  Noncoding RNA therapeutics — challenges and potential solutions , 2021, Nature reviews. Drug discovery.

[13]  Bingxi Lei,et al.  LncRNA TCONS_00004099-derived microRNA regulates oncogenesis through PTPRF in gliomas , 2021, Annals of translational medicine.

[14]  Burton B. Yang,et al.  Targeting circular RNAs as a therapeutic approach: current strategies and challenges , 2021, Signal Transduction and Targeted Therapy.

[15]  Lijuan Duan,et al.  Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing , 2021, Frontiers in Genetics.

[16]  S. Crooke,et al.  Antisense technology: an overview and prospectus , 2021, Nature Reviews Drug Discovery.

[17]  Zi-Bing Jin,et al.  Circular RNAs in the Central Nervous System , 2021, Frontiers in Molecular Biosciences.

[18]  G. Terstappen,et al.  Strategies for delivering therapeutics across the blood–brain barrier , 2021, Nature Reviews Drug Discovery.

[19]  Galina Marsh,et al.  Highly efficient neuronal gene knockout in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice , 2021, Gene Therapy.

[20]  T. Iwatsubo,et al.  Long non-coding RNA NEAT1_1 ameliorates TDP-43 toxicity in in vivo models of TDP-43 proteinopathy , 2021, RNA biology.

[21]  Yangming Wang,et al.  Monitoring the promoter activity of long noncoding RNAs and stem cell differentiation through knock-in of sgRNA flanked by tRNA in an intron , 2021, bioRxiv.

[22]  Guanxun Cheng,et al.  Nanomedicine Directs Neuronal Differentiation of Neural Stem Cells via Silencing Long Noncoding RNA for Stroke Therapy. , 2021, Nano letters.

[23]  Maite Huarte,et al.  Gene regulation by long non-coding RNAs and its biological functions , 2020, Nature reviews. Molecular cell biology.

[24]  Q. Pang,et al.  A novel lncRNA ARST represses glioma progression by inhibiting ALDOA-mediated actin cytoskeleton integrity , 2020, Journal of Experimental & Clinical Cancer Research.

[25]  James C. Wright,et al.  GENCODE 2021 , 2020, Nucleic Acids Res..

[26]  J. Stein,et al.  Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA , 2020, Nature.

[27]  Isabel Chillón,et al.  The molecular structure of long non-coding RNAs: emerging patterns and functional implications , 2020, Critical reviews in biochemistry and molecular biology.

[28]  Shanshan Hu,et al.  LncRNA BCYRN1 inhibits glioma tumorigenesis by competitively binding with miR-619-5p to regulate CUEDC2 expression and the PTEN/AKT/p21 pathway , 2020, Oncogene.

[29]  G. Halliday,et al.  Circular RNAs: The Brain Transcriptome Comes Full Circle , 2020, Trends in Neurosciences.

[30]  Hong Lu,et al.  LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. , 2020, Life sciences.

[31]  S. Kadener,et al.  An in vivo strategy for knockdown of circular RNAs , 2020, Cell Discovery.

[32]  Yong Zhang,et al.  LncRNA H19 Attenuates Apoptosis in MPTP-Induced Parkinson’s Disease Through Regulating miR-585-3p/PIK3R3 , 2020, Neurochemical Research.

[33]  Beilin Zhang,et al.  LncRNA MIR4435‐2HG potentiates the proliferation and invasion of glioblastoma cells via modulating miR‐1224‐5p/TGFBR2 axis , 2020, Journal of cellular and molecular medicine.

[34]  John G. Doench,et al.  Design and analysis of CRISPR–Cas experiments , 2020, Nature Biotechnology.

[35]  V. Cowling,et al.  Direct High‐Throughput Screening Assay for mRNA Cap Guanine‐N7 Methyltransferase Activity , 2020, Chemistry.

[36]  Jun Zhang,et al.  Distinct Processing of lncRNAs Contributes to Non-conserved Functions in Stem Cells , 2020, Cell.

[37]  Huatai Xu,et al.  Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice , 2020, Cell.

[38]  N. Rajewsky,et al.  A Highly Conserved Circular RNA Is Required to Keep Neural Cells in a Progenitor State in the Mammalian Brain. , 2020, Cell reports.

[39]  P. Kapranov,et al.  A CRISPR/Cas13-based approach demonstrates biological relevance of vlinc class of long non-coding RNAs in anticancer drug response , 2020, Scientific Reports.

[40]  W. Shen,et al.  Overexpression of long non-coding RNA Rian attenuates cell apoptosis from cerebral ischemia-reperfusion injury via Rian/miR-144-3p/GATA3 signaling. , 2020, Gene.

[41]  Jian-Guo Chen,et al.  A novel pathway regulates social hierarchy via lncRNA AtLAS and postsynaptic synapsin IIb , 2020, Cell Research.

[42]  E. Nestler,et al.  Regulation of impulsive and aggressive behaviours by a novel lncRNA , 2020, Molecular Psychiatry.

[43]  N. Amariglio,et al.  The m6A epitranscriptome: transcriptome plasticity in brain development and function , 2019, Nature Reviews Neuroscience.

[44]  K. Qu,et al.  A genome-wide long noncoding RNA CRISPRi screen identifies PRANCR as a novel regulator of epidermal homeostasis , 2019, Genome research.

[45]  I. Ulitsky,et al.  Regulation of gene expression by cis-acting long non-coding RNAs , 2019, Nature Reviews Genetics.

[46]  R. McPherson,et al.  Off-target effects of CRISPRa on interleukin-6 expression , 2019, PloS one.

[47]  J. Kjems,et al.  The biogenesis, biology and characterization of circular RNAs , 2019, Nature Reviews Genetics.

[48]  O. Abudayyeh,et al.  CRISPR Tools for Systematic Studies of RNA Regulation. , 2019, Cold Spring Harbor perspectives in biology.

[49]  Han-dong Wang,et al.  Long Non-coding RNA in CNS Injuries: A New Target for Therapeutic Intervention , 2019, Molecular therapy. Nucleic acids.

[50]  F. Lubin,et al.  Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related memory impairment , 2019, Science Signaling.

[51]  Ryan L Setten,et al.  The current state and future directions of RNAi-based therapeutics , 2019, Nature Reviews Drug Discovery.

[52]  Adrian Pickar-Oliver,et al.  The next generation of CRISPR–Cas technologies and applications , 2019, Nature Reviews Molecular Cell Biology.

[53]  J. Rinn,et al.  The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis , 2019, Nature Communications.

[54]  Wei Zhang,et al.  LncRNA FOXD1‐AS1 acts as a potential oncogenic biomarker in glioma , 2019, CNS neuroscience & therapeutics.

[55]  B. Blencowe,et al.  The Long Noncoding RNA Pnky Is a Trans-acting Regulator of Cortical Development In Vivo. , 2019, Developmental cell.

[56]  Yang Wang,et al.  Cellular functions of long noncoding RNAs , 2019, Nature Cell Biology.

[57]  Yun Xu,et al.  LncRNA-1810034E14Rik reduces microglia activation in experimental ischemic stroke , 2019, Journal of Neuroinflammation.

[58]  Jun Nishiyama Genome editing in the mammalian brain using the CRISPR–Cas system , 2019, Neuroscience Research.

[59]  Rory Johnson,et al.  Global Positioning System: Understanding Long Noncoding RNAs through Subcellular Localization. , 2019, Molecular cell.

[60]  Ming Shi,et al.  A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool , 2019, Nature Cell Biology.

[61]  C. Lengner,et al.  In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease , 2019, Nature Neuroscience.

[62]  En-yao Li,et al.  LncRNA MIAT overexpression reduced neuron apoptosis in a neonatal rat model of hypoxic-ischemic injury through miR-211/GDNF , 2018, Cell cycle.

[63]  Haiyan An,et al.  NEAT1 and paraspeckles in neurodegenerative diseases: A missing lnc found? , 2018, Non-coding RNA research.

[64]  Ying Liu,et al.  Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites , 2018, Nature Biotechnology.

[65]  I. Ulitsky,et al.  Regulation of Neuroregeneration by Long Noncoding RNAs. , 2018, Molecular cell.

[66]  Lei S. Qi,et al.  CRISPR Activation Screens Systematically Identify Factors that Drive Neuronal Fate and Reprogramming. , 2018, Cell stem cell.

[67]  Xuan Zhang,et al.  CRISPRlnc: a manually curated database of validated sgRNAs for lncRNAs , 2018, Nucleic Acids Res..

[68]  F. Ay,et al.  The Evf2 Ultraconserved Enhancer lncRNA Functionally and Spatially Organizes Megabase Distant Genes in the Developing Forebrain. , 2018, Molecular cell.

[69]  Jennifer A. Doudna,et al.  CRISPR-Cas guides the future of genetic engineering , 2018, Science.

[70]  Junjie Xiao,et al.  Circular RNAs: Promising Biomarkers for Human Diseases , 2018, EBioMedicine.

[71]  Robert Brenner,et al.  Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours , 2018, Nature Biomedical Engineering.

[72]  A. Frankish,et al.  Towards a complete map of the human long non-coding RNA transcriptome , 2018, Nature Reviews Genetics.

[73]  J. Rinn,et al.  An Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in Drug Resistance , 2018, Cell.

[74]  Keith W. Vance,et al.  The long non‐coding RNA Paupar promotes KAP1‐dependent chromatin changes and regulates olfactory bulb neurogenesis , 2018, The EMBO journal.

[75]  Q. Morris,et al.  QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data , 2018, Genome Biology.

[76]  David P. Bartel,et al.  A Network of Noncoding Regulatory RNAs Acts in the Mammalian Brain , 2018, Cell.

[77]  Leon N. Schulte,et al.  Cas9-mediated excision of proximal DNaseI/H3K4me3 signatures confers robust silencing of microRNA and long non-coding RNA genes , 2018, PloS one.

[78]  Huatai Xu,et al.  In vivo simultaneous transcriptional activation of multiple genes in the brain using CRISPR–dCas9-activator transgenic mice , 2018, Nature Neuroscience.

[79]  Jerilyn A Timlin,et al.  Delivering CRISPR: a review of the challenges and approaches , 2018, Drug delivery.

[80]  D. Corey,et al.  Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs , 2017, Nucleic acids research.

[81]  B. Menten,et al.  CRISPR/Cas9-mediated genome editing in naïve human embryonic stem cells , 2017, Scientific Reports.

[82]  Max J. Kellner,et al.  RNA editing with CRISPR-Cas13 , 2017, Science.

[83]  Michael Q. Zhang,et al.  NONCODEV5: a comprehensive annotation database for long non-coding RNAs , 2017, Nucleic Acids Res..

[84]  Patricia Deng,et al.  The evolution and adaptation of A-to-I RNA editing , 2017, PLoS genetics.

[85]  V. Beneš,et al.  A cautionary tale of sense-antisense gene pairs: independent regulation despite inverse correlation of expression , 2017, Nucleic acids research.

[86]  Matthew C. Canver,et al.  High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. , 2017, Molecular cell.

[87]  Aviv Regev,et al.  RNA targeting with CRISPR–Cas13 , 2017, Nature.

[88]  Xiaochuan Sun,et al.  The long non-coding RNA Neat1 is an important mediator of the therapeutic effect of bexarotene on traumatic brain injury in mice , 2017, Brain, Behavior, and Immunity.

[89]  Carmen Birchmeier,et al.  Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function , 2017, Science.

[90]  Z. Qiu,et al.  Long non-coding RNA tagging and expression manipulation via CRISPR/Cas9-mediated targeted insertion , 2017, Protein & Cell.

[91]  Jesse M. Engreitz,et al.  Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood , 2017, Nature.

[92]  S. Crooke,et al.  RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[93]  Eugene V Koonin,et al.  Diversity, classification and evolution of CRISPR-Cas systems. , 2017, Current opinion in microbiology.

[94]  William F Marzluff,et al.  Inducing circular RNA formation using the CRISPR endoribonuclease Csy4. , 2017, RNA.

[95]  L. Buzanska,et al.  Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation , 2017, Front. Cell. Neurosci..

[96]  Hao Zhu,et al.  Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA. , 2017, Angewandte Chemie.

[97]  Zhuomin Wu,et al.  LncRNA-N1LR Enhances Neuroprotection Against Ischemic Stroke Probably by Inhibiting p53 Phosphorylation , 2016, Molecular Neurobiology.

[98]  Zhongzheng Cao,et al.  Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library , 2016, Nature Biotechnology.

[99]  E. Lander,et al.  Local regulation of gene expression by lncRNA promoters, transcription and splicing , 2016, Nature.

[100]  Jin-Soo Kim Genome editing comes of age , 2016, Nature Protocols.

[101]  Julia Salzman,et al.  Circular RNAs: analysis, expression and potential functions , 2016, Development.

[102]  Z. Lu,et al.  Divergent lncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells. , 2016, Cell stem cell.

[103]  Chinmay J. Shukla,et al.  Function and evolution of local repeats in the Firre locus , 2016, Nature Communications.

[104]  L. Mir,et al.  Overcoming the Specific Toxicity of Large Plasmids Electrotransfer in Primary Cells In Vitro , 2016, Molecular therapy. Nucleic acids.

[105]  Cole Trapnell,et al.  Single-cell transcriptome sequencing: recent advances and remaining challenges , 2016, F1000Research.

[106]  R. Flavell,et al.  Generation of Genetically Modified Mice Using the CRISPR-Cas9 Genome-Editing System. , 2016, Cold Spring Harbor protocols.

[107]  E. Lander The Heroes of CRISPR , 2016, Cell.

[108]  J. Rinn,et al.  Mechanisms of Long Non-coding RNAs in Mammalian Nervous System Development, Plasticity, Disease, and Evolution , 2015, Neuron.

[109]  Feng Zhang,et al.  Applications of CRISPR–Cas systems in neuroscience , 2015, Nature Reviews Neuroscience.

[110]  Chase L. Beisel,et al.  Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. , 2015, Angewandte Chemie.

[111]  Sergey A. Shmakov,et al.  Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. , 2015, Molecular cell.

[112]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[113]  Clifford A. Meyer,et al.  Sequence determinants of improved CRISPR sgRNA design , 2015, Genome research.

[114]  J. Rinn,et al.  CRISPR Display: A modular method for locus-specific targeting of long noncoding RNAs and synthetic RNA devices in vivo , 2015, Nature Methods.

[115]  Neville E. Sanjana,et al.  High-throughput functional genomics using CRISPR–Cas9 , 2015, Nature Reviews Genetics.

[116]  A. Kriegstein,et al.  The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. , 2015, Cell stem cell.

[117]  H. Feng,et al.  Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B , 2014, Cell Research.

[118]  Ron Weiss,et al.  Highly-efficient Cas9-mediated transcriptional programming , 2014, Nature Methods.

[119]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[120]  Ronald D. Vale,et al.  A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging , 2014, Cell.

[121]  A. Beaudet,et al.  Towards a therapy for Angelman syndrome by reduction of a long non-coding RNA , 2014, Nature.

[122]  Feng Zhang,et al.  In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9 , 2014, Nature Biotechnology.

[123]  Michael Y Tolstorukov,et al.  The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. , 2014, Molecular cell.

[124]  B. Sabatini,et al.  CRISPR/Cas9-Mediated Gene Knock-Down in Post-Mitotic Neurons , 2014, PloS one.

[125]  Benjamin L. Oakes,et al.  Programmable RNA recognition and cleavage by CRISPR/Cas9 , 2014, Nature.

[126]  D. Bartel,et al.  Expanded identification and characterization of mammalian circular RNAs , 2014, Genome Biology.

[127]  Bian Hu,et al.  Efficient in vivo deletion of a large imprinted lncRNA by CRISPR/Cas9 , 2014, RNA biology.

[128]  N. Sharpless,et al.  Detecting and characterizing circular RNAs , 2014, Nature Biotechnology.

[129]  A.V. Lakhin,et al.  Aptamers: Problems, Solutions and Prospects , 2013, Acta naturae.

[130]  A. Fatica,et al.  Long non-coding RNAs: new players in cell differentiation and development , 2013, Nature Reviews Genetics.

[131]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[132]  Yarden Katz,et al.  Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system , 2013, Cell Research.

[133]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[134]  Hua Lu,et al.  Reconfiguring the architectures of cationic helical polypeptides to control non-viral gene delivery. , 2013, Biomaterials.

[135]  J. Keith Joung,et al.  Robust, synergistic regulation of human gene expression using TALE activators , 2013, Nature Methods.

[136]  Farshid Guilak,et al.  Synergistic and tunable human gene activation by combinations of synthetic transcription factors , 2013, Nature Methods.

[137]  F. Pauler,et al.  Airn Transcriptional Overlap, But Not Its lncRNA Products, Induces Imprinted Igf2r Silencing , 2012, Science.

[138]  D. Selwood,et al.  siRNA Delivery: From Lipids to Cell‐penetrating Peptides and Their Mimics , 2012, Chemical biology & drug design.

[139]  N. Goshima,et al.  Alternative 3′‐end processing of long noncoding RNA initiates construction of nuclear paraspeckles , 2012, The EMBO journal.

[140]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[141]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[142]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[143]  M. Mehler,et al.  Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease , 2012, Nature Reviews Neuroscience.

[144]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[145]  Hashim M. Al-Hashimi,et al.  Functional complexity and regulation through RNA dynamics , 2012, Nature.

[146]  J. Rinn,et al.  Modular regulatory principles of large non-coding RNAs , 2012, Nature.

[147]  Rory Johnson,et al.  Human long non‐coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors , 2012, The EMBO journal.

[148]  S. Diederichs,et al.  Noncoding RNA gene silencing through genomic integration of RNA destabilizing elements using zinc finger nucleases. , 2011, Genome research.

[149]  L. Cerchia,et al.  Targeting cancer cells with nucleic acid aptamers. , 2010, Trends in biotechnology.

[150]  Michael Q. Zhang,et al.  A long nuclear‐retained non‐coding RNA regulates synaptogenesis by modulating gene expression , 2010, The EMBO journal.

[151]  Jennifer A. Doudna,et al.  Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease , 2010, Science.

[152]  Howard Y. Chang,et al.  Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes , 2010, Science.

[153]  B. Davidson,et al.  RNAi therapeutics for CNS disorders , 2010, Brain Research.

[154]  Howard Y. Chang,et al.  Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis , 2010, Nature.

[155]  J. Rinn,et al.  Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression , 2009, Proceedings of the National Academy of Sciences.

[156]  John N. Hutchinson,et al.  An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. , 2009, Molecular cell.

[157]  S. Sunkin,et al.  Specific expression of long noncoding RNAs in the mouse brain , 2008, Proceedings of the National Academy of Sciences.

[158]  Michael Famulok,et al.  Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. , 2007, Chemical reviews.

[159]  D. Haussler,et al.  An RNA gene expressed during cortical development evolved rapidly in humans , 2006, Nature.

[160]  J. Mattick,et al.  Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. , 2005, Genome research.

[161]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[162]  J. Mattick Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms. , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[163]  C. Barbas,et al.  Positive and negative regulation of endogenous genes by designed transcription factors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[164]  B. Migeon,et al.  Human X inactivation center induces random X chromosome inactivation in male transgenic mice. , 1999, Genomics.

[165]  M. Wood,et al.  Antisense oligonucleotides: the next frontier for treatment of neurological disorders , 2018, Nature Reviews Neurology.

[166]  C. Barbas,et al.  Information for Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors , 2013 .

[167]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[168]  T. Derrien,et al.  Mini Review Article , 2022 .