Stability of noble-gas-bound SiH₃⁺ clusters.

The stability of noble gas (Ng)-bound SiH3(+) clusters is explored by ab initio computations. Owing to a high positive charge (+1.53 e(-)), the Si center of SiH3(+) can bind two Ng atoms. However, the Si-Ng dissociation energy for the first Ng atom is considerably larger than that for the second one. As we go down group 18, the dissociation energy gradually increases, and the largest value is observed for the case of Rn. For NgSiH3(+) clusters, the Ar-Rn dissociation processes are endergonic at room temperature. For He and Ne, a much lower temperature is required for it to be viable. The formation of Ng2SiH3(+) clusters is also feasible, particularly for the heavier members and at low temperature. To shed light on the nature of Si-Ng bonding, natural population analysis, Wiberg bond indices computations, electron-density analysis, and energy-decomposition analysis were performed. Electron transfer from the Ng centers to the electropositive Si center occurs only to a small extent for the lighter Ng atoms and to a somewhat greater extent for the heavier analogues. The Si-Xe/Rn bonds can be termed covalent bonds, whereas the Si-He/Ne bonds are noncovalent. The Si-Ar/Kr bonds possess some degree of covalent character, as they are borderline cases. Contributions from polarization and charge transfer and exchange are key terms in forming Si-Ng bonds. We also studied the effect of substituting the H atoms of SiH3(+) by halide groups (-X) on the Ng binding ability. SiF3(+) showed enhanced Ng binding ability, whereas SiCl3(+) and SiBr3(+) showed a lower ability to bind Ng than SiH3(+). A compromise originates from the dual play of the inductive effect of the -X groups and X→Si π backbonding (p(z)-p(z) interaction).

[1]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[2]  R. Benny Gerber,et al.  Lifetimes of compounds made of noble-gas atoms with water , 2009 .

[3]  T. Ghanty,et al.  Structure and stability of xenon insertion compounds of hypohalous acids, HXeOX [X=F, Cl, and Br]: an ab initio investigation. , 2006, The Journal of chemical physics.

[4]  A. Antropoff Die Wertigkeit der Edelgase und ihre Stellung im periodischen System. II , 1924 .

[5]  W. Jäger,et al.  Investigation of the Ne-NH3 van der Waals complex: Rotational spectrum and ab initio calculations , 2001 .

[6]  Vladimir I. Feldman,et al.  Further evidence for formation of xenon dihydride from neutral hydrogen atoms: a comparison of ESR and IR spectroscopic results , 1997 .

[7]  Lester Andrews,et al.  Reactions of laser ablated Be atoms with O2: Infrared spectra of beryllium oxides in solid argon , 1994 .

[8]  W. Grochala Atypical compounds of gases, which have been called 'noble'. , 2007, Chemical Society reviews.

[9]  Jan Lundell,et al.  Organo-noble-gas hydride compounds HKrCCH, HXeCCH, HXeCC, and HXeCCXeH: formation mechanisms and effect of 13C isotope substitution on the vibrational properties. , 2004, The Journal of chemical physics.

[10]  S. Ryazantsev,et al.  Photolabile xenon hydrides: a case study of HXeSH and HXeH. , 2013, The Journal of chemical physics.

[11]  J. E. Boggs,et al.  On the covalent character of rare gas bonding interactions: a new kind of weak interaction. , 2013, The journal of physical chemistry. A.

[12]  Stefano Borocci,et al.  Neutral helium compounds: theoretical evidence for a large class of polynuclear complexes. , 2006, Chemistry.

[13]  Jan Lundell,et al.  Fluorine-free organoxenon chemistry: HXeCCH, HXeCC, and HXeCCXeH. , 2003, Journal of the American Chemical Society.

[14]  M. Gerry,et al.  XeCu covalent bonding in XeCuF and XeCuCl, characterized by fourier transform microwave spectroscopy supported by quantum chemical calculations. , 2006, Journal of the American Chemical Society.

[15]  Detlef Schröder,et al.  Generation of the ArCF22+ Dication , 2010 .

[16]  Michael C. L. Gerry,et al.  Noble gas–metal chemical bonding? The microwave spectra, structures, and hyperfine constants of Ar–CuX(X=F, Cl, Br) , 2000 .

[17]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[18]  Kelling J. Donald,et al.  Influence of endohedral confinement on the electronic interaction between He atoms: a He2@C20H20 case study. , 2009, Chemistry.

[19]  Gernot Frenking,et al.  Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). , 2007, Chemistry.

[20]  Jan Lundell,et al.  Quantum chemical calculations on FXeSiF , 2001 .

[21]  Felice Grandinetti,et al.  Helium Chemistry: A Survey of the Role of the Ionic Species , 2004 .

[22]  Jan Lundell,et al.  HXeSH, the First Example of a Xenon-Sulfur Bond , 1998 .

[23]  Hui Li,et al.  Energy decomposition analysis of covalent bonds and intermolecular interactions. , 2009, The Journal of chemical physics.

[24]  R. Benny Gerber,et al.  Quantum Chemical Calculations on Novel Molecules from Xenon Insertion into Hydrocarbons , 2002 .

[25]  Jan Lundell,et al.  Insertion of noble gas atoms into cyanoacetylene: an ab initio and matrix isolation study. , 2006, The journal of physical chemistry. A.

[26]  Jan Lundell,et al.  Matrix-isolation and ab initio study of HNgCCF and HCCNgF molecules (Ng = Ar, Kr, and Xe). , 2010, The journal of physical chemistry. A.

[27]  R. Gerber,et al.  High coordination chemically bound compounds of noble gases with hydrocarbons: Ng(CCH)4 and Ng(CCH)6, (Ng=Xe or Kr). , 2006, The Journal of chemical physics.

[28]  Lorenza Operti,et al.  Xenon-nitrogen chemistry: gas-phase generation and theoretical investigation of the xenon-difluoronitrenium ion F2N-Xe+. , 2011, Chemistry.

[29]  Gernot Frenking,et al.  Donor acceptor complexes of noble gases. , 2009, Journal of the American Chemical Society.

[30]  Jan Lundell,et al.  A neutral xenon-containing radical, HXeO. , 2003, Journal of the American Chemical Society.

[31]  Paola Antoniotti,et al.  Stable Compounds of the Lightest Noble Gases: A Computational Investigation of RNBeNg (Ng = He, Ne, Ar) , 2003 .

[32]  Tapan K. Ghanty,et al.  Theoretical prediction of rare gas containing hydride cations: HRgBF+ (Rg = He, Ar, Kr, and Xe). , 2013, The journal of physical chemistry. A.

[33]  Gernot Frenking,et al.  Neutral noble gas compounds exhibiting a Xe-Xe bond: structure, stability and bonding situation. , 2012, Physical chemistry chemical physics : PCCP.

[34]  Mika Pettersson,et al.  The mechanism of formation and infrared-induced decomposition of HXeI in solid Xe , 1997 .

[35]  F. Bickelhaupt,et al.  Bonding of xenon hydrides. , 2009, Journal of Physical Chemistry A.

[36]  Jerzy Cioslowski,et al.  Universality among topological properties of electron density associated with the hydrogen–hydrogen nonbonding interactions , 1992 .

[37]  Michael C. L. Gerry,et al.  The microwave spectrum and structure of KrAgF , 2002 .

[38]  Michael C. L. Gerry,et al.  Microwave Spectrum, Structure, and Hyperfine Constants of Kr-AgCl: Formation of a Weak Kr-Ag Covalent Bond. , 2001, Journal of molecular spectroscopy.

[39]  Jan Lundell,et al.  Chemical compounds formed from diacetylene and rare-gas atoms: HKrC4H and HXeC4H. , 2003, Journal of the American Chemical Society.

[40]  Neil Bartlett,et al.  Concerning the nature of XePtF6 , 2000 .

[41]  Mariusz Klobukowski,et al.  Structure and stability of organic molecules containing heavy rare gas atoms , 2013, Theoretical Chemistry Accounts.

[42]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .

[43]  Henrik Kunttu,et al.  On photochemistry of water in solid Xe: Thermal and light-induced decomposition of HXeOH and HXeH and formation of H2O2 , 2002 .

[44]  J. Dyke,et al.  Vacuum ultraviolet photoelectron spectroscopy of transient species. XVII. The SiH3(X 2A1) radical , 1983 .

[45]  Sean A C McDowell,et al.  Are insertion compounds of CH2CHF and the rare gases stable? A computational study. , 2004, The Journal of chemical physics.

[46]  R. Parr,et al.  Principle of maximum hardness , 1991 .

[47]  Felice Grandinetti,et al.  The gaseous trifluorosilylxenon cation, F3SiXe+: a stable species with a silicon–xenon bond , 1995 .

[48]  Wolfram Koch,et al.  Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogs NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation , 1988 .

[49]  Vladimir I. Feldman,et al.  Formation and decay of transient xenon dihydride resulting from hydrocarbon radiolysis in a xenon matrix , 1996 .

[50]  Wojciech Grochala,et al.  A metastable He-O bond inside a ferroelectric molecular cavity: (HeO)(LiF)2. , 2012, Physical chemistry chemical physics : PCCP.

[51]  Markku Räsänen,et al.  Halogenated xenon cyanides ClXeCN, ClXeNC, and BrXeCN. , 2012, Inorganic chemistry.

[52]  F. Bickelhaupt,et al.  Radon hydrides: structure and bonding. , 2011, Physical chemistry chemical physics : PCCP.

[53]  Qiang Wang,et al.  Infrared spectra of NgBeS (Ng = Ne, Ar, Kr, Xe) and BeS2 in noble-gas matrices. , 2013, The journal of physical chemistry. A.

[54]  Jon Baker,et al.  Rare-gas insertion compounds of perfluorobenzene: aromaticity of some unstable species. , 2005, The Journal of chemical physics.

[55]  Markku Räsänen,et al.  Noble-gas hydrides: new chemistry at low temperatures. , 2009, Accounts of chemical research.

[56]  Pekka Pyykkö,et al.  Molecular double-bond covalent radii for elements Li-E112. , 2009, Chemistry.

[57]  Mariusz Klobukowski,et al.  Improved model core potentials: Application to the thermochemistry of organoxenon complexes , 2002 .

[58]  A. Haaland,et al.  Topological analysis of electron densities: is the presence of an atomic interaction line in an equilibrium geometry a sufficient condition for the existence of a chemical bond? , 2004, Chemistry.

[59]  P. Chattaraj,et al.  On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. , 2013, The journal of physical chemistry. A.

[60]  K. Hiraoka,et al.  Thermochemistry of the SiH3+(SiH4)n and SiH3+(H2)n cluster ions , 1997 .

[61]  D. Marabello,et al.  About the topological classification of the metal–metal bond , 2004 .

[62]  Pratim K. Chattaraj,et al.  Movement of Ng2 molecules confined in a C60 cage: An ab initio molecular dynamics study , 2014 .

[63]  K. O. Christe Die Renaissance der Edelgaschemie , 2001 .

[64]  D. Schröder,et al.  Siliciumverbindungen von Neon und Argon , 2009 .

[65]  Pratim K Chattaraj,et al.  Confinement induced binding of noble gas atoms. , 2014, The Journal of chemical physics.

[66]  Lester Andrews,et al.  Noble Gas Complexes with BeO: Infrared Spectra of NG-BeO (NG = Ar, Kr, Xe) , 1994 .

[67]  K. Hiraoka,et al.  Thermochemistry and structure of the cluster ions CH3+(CO)n and SiH3+(CO)n in the gas phase , 1997 .

[68]  Gernot Frenking,et al.  Structures and bond energies of the noble gas complexes NgBeO (NgAr, Kr, Xe) , 1994 .

[69]  Michael C. L. Gerry,et al.  Insights into the xenon–silver halide interaction from a rotational spectroscopic study of XeAgF and XeAgCl , 2004 .

[70]  Jan Lundell,et al.  A gate to organokrypton chemistry: HKrCCH. , 2003, Journal of the American Chemical Society.

[71]  T. Ghanty,et al.  Significant increase in the stability of rare gas hydrides on insertion of beryllium atom. , 2007, The Journal of chemical physics.

[72]  Beatriz Cordero,et al.  Covalent radii revisited. , 2008, Dalton transactions.

[73]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[74]  Vladimir I Feldman,et al.  Experimental evidence for the formation of HXeCCH: the first hydrocarbon with an inserted rare-gas atom. , 2003, Journal of the American Chemical Society.

[75]  Wojciech Grochala,et al.  On Chemical Bonding Between Helium and Oxygen , 2009 .

[76]  Jan Lundell,et al.  Neutral rare‐gas containing charge‐transfer molecules in solid matrices. II. HXeH, HXeD, and DXeD in Xe , 1995 .

[77]  Stefano Borocci,et al.  From OBeHe to H3BOBeHe: Enhancing the stability of a neutral helium compound , 2005 .

[78]  M. Pettersson,et al.  A more stable configuration of HArF in solid argon. , 2001, Journal of the American Chemical Society.

[79]  T. Ghanty,et al.  Prediction of metastable metal-rare gas fluorides: FMRgF (M=Be and Mg; Rg=Ar, Kr and Xe). , 2008, The Journal of chemical physics.

[80]  R. Benny Gerber,et al.  First compounds with argon–carbon and argon–silicon chemical bonds , 2003 .

[81]  Alberto Vela,et al.  The implications of symmetry of the external potential on bond paths. , 2008, Chemistry.

[82]  J. J. Turner,et al.  Krypton Fluoride: Preparation by the Matrix Isolation Technique , 1963, Science.

[83]  E. Molins,et al.  From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems , 2002 .

[84]  Wolfram Koch,et al.  Theoretical investigations of small multiply charged cations. III. NeN2 , 1986 .

[85]  Pratim K. Chattaraj,et al.  Attractive Xe-Li interaction in Li-decorated clusters , 2013 .

[86]  M. Gerry,et al.  Microwave spectra and structures of KrAuF, KrAgF, and KrAgBr; 83Kr nuclear quadrupole coupling and the nature of noble gas-noble metal halide bonding. , 2004, Journal of the American Chemical Society.

[87]  Michael C. L. Gerry,et al.  The microwave spectra and structures of Ar–AgX (X=F,Cl,Br) , 2000 .

[88]  K. Christe A Renaissance in Noble Gas Chemistry. , 2001, Angewandte Chemie.

[89]  Pratim K Chattaraj,et al.  C5Li7(+) and O2Li5(+) as noble-gas-trapping agents. , 2013, Chemistry.

[90]  Roald Hoffmann,et al.  Freezing in resonance structures for better packing: XeF2 becomes (XeF+)(F-) at large compression. , 2011, Inorganic chemistry.

[91]  M. Heaven,et al.  Spectroscopic characterization of the C2-Ne van der Waals complex. , 2006, The Journal of chemical physics.

[92]  S. G. Semenov,et al.  Quantum-chemical study of organoxenon molecules Xe(CF3)2 and FXeCF3 , 2004 .

[93]  Detlef Schröder,et al.  Silicon compounds of neon and argon. , 2009, Angewandte Chemie.

[94]  L. Stein Removal of Xenon and Radon from Contaminated Atmospheres with Dioxygenyl Hexafluoroantimonate, O2SbF6 , 1973, Nature.

[95]  Michael C. L. Gerry,et al.  Noble gas metal chemical bonding: the microwave spectra, structures and hyperfine constants of Ar AuF and Ar AuBr , 2000 .

[96]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[97]  Miquel Solà,et al.  Polycyclic benzenoids: why kinked is more stable than straight. , 2007, The Journal of organic chemistry.

[98]  Min Zhang,et al.  Ab initio study of the organic xenon insertion compound into ethylene and ethane. , 2013, The Journal of chemical physics.

[99]  Mika Pettersson,et al.  A Chemical Compound Formed from Water and Xenon: HXeOH , 1999 .

[100]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[101]  G. Pimentel,et al.  Infrared detection of xenon dichloride , 1967 .

[102]  Lorenza Operti,et al.  F3Ge-Xe+: a Xenon-Germanium Molecular Species , 2010 .

[103]  M. Gerry,et al.  Rotational spectra, structures, hyperfine constants, and the nature of the bonding of KrCuF and KrCuCl. , 2004, Inorganic chemistry.

[104]  K. Christe Bartlett's discovery of noble gas fluorides, a milestone in chemical history. , 2013, Chemical communications.

[105]  Guoqun Liu,et al.  Theoretical study on the CH3NgF species , 2010 .

[106]  Michael C. L. Gerry,et al.  Noble Gas−Metal Chemical Bonds. Microwave Spectra, Geometries, and Nuclear Quadrupole Coupling Constants of Ar−AuCl and Kr−AuCl , 2000 .

[107]  Jan Lundell,et al.  A stable argon compound , 2000, Nature.

[108]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[109]  Wolfram Koch,et al.  Light noble gas chemistry: structures, stabilities, and bonding of helium, neon, and argon compounds , 1990 .

[110]  Gernot Frenking,et al.  Is it possible to synthesize a neutral noble gas compound containing a Ng-Ng bond? A theoretical study of H-Ng-Ng-F (Ng = Ar, Kr, Xe). , 2009, Angewandte Chemie.

[111]  Vladimir I Feldman,et al.  Direct visualization of the H-Xe bond in xenon hydrides: xenon isotopic shift in the IR spectra. , 2009, The Journal of chemical physics.

[112]  A. Cunje,et al.  Bonding of Rare-Gas Atoms to Si in Reactions of Rare Gases with SiF3 + , 2001 .

[113]  A. S. Dickinson,et al.  Accuracy of recent potential energy surfaces for the He-N2 interaction. I. Virial and bulk transport coefficients. , 2007, The Journal of chemical physics.

[114]  Markku Räsänen,et al.  Matrix-isolation and ab initio study of HXeCCH complexed with acetylene , 2009 .

[115]  Venkatesan Subramanian,et al.  Structure and stability of (NG)nCN3Be3(+) clusters and comparison with (NG)BeY(0/+). , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.