Sampling and Reconstruction of Surfaces and Higher Dimensional Manifolds

We present new sampling theorems for surfaces and higher dimensional manifolds. The core of the proofs resides in triangulation results for manifolds with boundary, not necessarily bounded. The method is based upon geometric considerations that are further augmented for 2-dimensional manifolds (i.e surfaces). In addition, we show how to apply the main results to obtain a new, geometric proof of the classical Shannon sampling theorem, and also to image analysis.

[1]  E. Moise Geometric Topology in Dimensions 2 and 3 , 1977 .

[2]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[3]  Yehoshua Y. Zeevi,et al.  Nonuniform sampling and antialiasing in image representation , 1993, IEEE Trans. Signal Process..

[4]  Robert J. Marks,et al.  Differintegral interpolation from a bandlimited signal's samples , 1981 .

[5]  Takis Sakkalis,et al.  Approximating Curves via Alpha Shapes , 1999, Graph. Model. Image Process..

[6]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[7]  Matthias Günther,et al.  Isometric Embeddings of Riemannian Manifolds , 2010 .

[8]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[9]  M. Gromov,et al.  Partial Differential Relations , 1986 .

[10]  Emil Saucan The Existence of Quasimeromorphic Mappings in Dimension 3 , 2003 .

[11]  Alexander M. Bronstein,et al.  Three-Dimensional Face Recognition , 2005, International Journal of Computer Vision.

[12]  S. S. Cairns On the Triangulation of Regular Loci , 1934 .

[13]  Alan L. Mackay,et al.  Publish or perish , 1974, Nature.

[14]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[15]  Peter W. Hallinan A low-dimensional representation of human faces for arbitrary lighting conditions , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[16]  W. Kühnel,et al.  Smooth approximation of polyhedral surfaces regarding curvatures , 1982 .

[17]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[18]  Preface A Panoramic View of Riemannian Geometry , 2003 .

[19]  Yehoshua Y. Zeevi,et al.  Two-dimensional sampling and representation of folded surfaces embedded in higher dimensional manifolds , 2006, 2006 14th European Signal Processing Conference.

[20]  James Munkres Obstructions to the smoothing of piecewise-differentiable homeomorphisms , 1959 .

[21]  B. Andrews,et al.  Notes on the isometric embedding problem and the Nash-Moser implicit function theorem , 2002 .

[22]  Jeong Hyun Kang,et al.  Combinatorial Geometry , 2006 .

[23]  Xiang-Yang Li,et al.  Generating well-shaped Delaunay meshed in 3D , 2001, SODA '01.

[24]  M. M. Dodson,et al.  The Whittaker–Kotel’nikov– Shannon Theorem, Spectral Translates and Plancherel’s Formula , 2004 .

[25]  S. Smale,et al.  Shannon sampling and function reconstruction from point values , 2004 .

[26]  Robert Schrader,et al.  On the curvature of piecewise flat spaces , 1984 .

[27]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[28]  Tamal K. Dey,et al.  Manifold reconstruction from point samples , 2005, SODA '05.

[29]  Ron Kimmel,et al.  Images as Embedded Maps and Minimal Surfaces: Movies, Color, Texture, and Volumetric Medical Images , 2000, International Journal of Computer Vision.

[30]  S. S. Cairns,et al.  A simple triangulation method for smooth manifolds , 1961 .

[31]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[32]  H. Feichtinger,et al.  Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The $L^p$-theory , 1998 .

[33]  Yehoshua Y. Zeevi,et al.  Quasi-isometric and Quasi-conformal Development of Triangulated Surfaces for Computerized Tomography , 2006, IWCIA.

[34]  Tamal K. Dey,et al.  Sampling and meshing a surface with guaranteed topology and geometry , 2004, SCG '04.

[35]  David Eppstein,et al.  Dihedral bounds for mesh generation in high dimensions , 1995, SODA '95.

[36]  J. Munkres,et al.  Elementary Differential Topology. , 1967 .

[37]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[38]  J. Zerubia,et al.  A Generalized Sampling Theory without bandlimiting constraints , 1998 .

[39]  Tamal K. Dey,et al.  Anisotropic surface meshing , 2006, SODA '06.

[40]  Seppo Rickman,et al.  Existence of quasiregular mappings , 1988 .

[41]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[42]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[43]  Tamal K. Dey,et al.  Sampling and Meshing a Surface with Guaranteed Topology and Geometry , 2007, SIAM J. Comput..

[44]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[45]  J. R. Higgins,et al.  The Sampling Theorem and Several Equivalent Results in Analysis , 2000 .

[46]  Yehoshua Y. Zeevi,et al.  Local versus Global in Quasi-Conformal Mapping for Medical Imaging , 2008, Journal of Mathematical Imaging and Vision.

[47]  Emil Saucan Note on a Theorem of Munkres , 2004 .