Spectral collocation methods

Abstract This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  Andrew J. Majda,et al.  The Fourier method for nonsmooth initial data , 1978 .

[3]  T. A. Zang,et al.  Spectral Methods for Partial Differential Equations , 1984 .

[4]  Claudio Canuto,et al.  Error Estimates for Spectral and Pseudospectral Approximations of Hyperbolic Equations , 1982 .

[5]  P. Cornille A Pseudospectral Scheme for the Numerical Calculation of Shocks , 1982 .

[6]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[7]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[8]  Eitan Tadmor,et al.  Recovering Pointwise Values of Discontinuous Data within Spectral Accuracy , 1985 .

[9]  B. Mikic,et al.  Numerical investigation of incompressible flow in grooved channels. Part 1. Stability and self-sustained oscillations , 1986, Journal of Fluid Mechanics.

[10]  Eli Turkel,et al.  Stability of pseudospectral and finite-difference methods for variable coefficient problems , 1981 .

[11]  L. M. Delves,et al.  An Implicit Matching Principle for Global Element Calculations , 1979 .

[12]  T. A. Zang,et al.  Numerical experiments on subcritical transition mechanisms , 1985 .

[13]  Thomas A. Zang,et al.  On spectral multigrid methods for the time-dependent Navier-Stokes equations , 1986 .

[14]  Joseph Oliger,et al.  Stability of the Fourier method , 1977 .

[15]  Steven A. Orszag,et al.  Spectral Calculations of One-Dimensional Inviscid Compressible Flows , 1981 .

[16]  A. Quarteroni,et al.  Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .

[17]  M. D. Salas,et al.  Spectral methods for the Euler equations. II - Chebyshev methods and shock fitting , 1985 .

[18]  M. D. Salas,et al.  Spectral methods for the Euler equations. I - Fourier methods and shock capturing , 1985 .

[19]  E. Tadmor,et al.  Stability analysis of spectral methods for hyperbolic initial-boundary value systems , 1987 .

[20]  David Gottlieb,et al.  The stability of pseudospectral-Chebyshev methods , 1981 .

[21]  C. Canuto Boundary conditions in Chebyshev and Legendre methods , 1986 .

[22]  Anthony T. Patera,et al.  An isoparametric spectral element method for solution of the Navier-Stokes equations in complex geometry , 1986 .

[23]  C. Basdevant,et al.  Spectral and finite difference solutions of the Burgers equation , 1986 .

[24]  E. Tadmor The exponential accuracy of Fourier and Chebyshev differencing methods , 1986 .

[25]  Anthony T. Patera,et al.  Numerical investigation of incompressible flow in grooved channels. Part 2. Resonance and oscillatory heat-transfer enhancement , 1986, Journal of Fluid Mechanics.

[26]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[27]  Claudio Canuto,et al.  Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions , 1981 .

[28]  Ivo Babuška,et al.  Error estimates for the combinedh andp versions of the finite element method , 1981 .

[29]  Anthony T. Patera,et al.  Fast direct Poisson solvers for high-order finite element discretizations in rectangularly decomposable domains , 1986 .

[30]  Yau Shu Wong,et al.  Spectral multigrid methods for elliptic equations II , 1982 .

[31]  M. Hussaini,et al.  Spectral multigrid methods with applications to transonic potential flow , 1985 .

[32]  J. Pasciak Spectral and pseudospectral methods for advection equations , 1980 .

[33]  M. D. Salas,et al.  Spectral methods for inviscid, compressible flows , 1985 .

[34]  E. Tadmor Skew-selfadjoint form for systems of conservation laws , 1984 .

[35]  D. Kopriva A spectral multidomain method for the solution of hyperbolic systems , 1986 .

[36]  C. Streett,et al.  Improvements in spectral collocation discretization through a multiple domain technique , 1986 .

[37]  M. Hussaini,et al.  Mixed spectral/finite difference approximations for slightly viscous flows , 1981 .