III-V Compounds-on-Si: Heterostructure Fabrication, Application and Prospects

While silicon and gallium arsenide are dominant materials in modern micro- and nanoelectronics, devices fab- ricated from them still use Si and GaAs substrates only separately. Integrating these materials on the large and cheep Si substrate has been the subject of enormous research efforts for the past three decades. This review attempts to systematize and generalize the current understanding of the fundamental physical mechanisms governing the epitaxial growth of GaAs and related III-V compounds on Si substrates. Different kinds of bonding as a very promising non-epitaxial method for III-V thin film integration on Si substrate are reviewed. Basic techniques available for improving the quality of such het- erostructures are described, and recent advances in fabricating of device-quality III-V-on-Si heterostructures and corre- sponding devices are also presented.

[1]  U. Gösele,et al.  Low temperature wafer direct bonding , 1994 .

[2]  Philippe Regreny,et al.  III-V/Si photonics by die-to-wafer bonding , 2007 .

[3]  T. Tezuka,et al.  High mobility Ge-on-insulator p-channel MOSFETs using Pt germanide Schottky source/drain , 2005, IEEE Electron Device Letters.

[4]  Ben Depuydt,et al.  Germanium: From the first application of Czochralski crystal growth to large diameter dislocation-free wafers , 2006 .

[5]  Naresh Chand,et al.  GaAs bipolar transistors grown on (100) Si substrates by molecular beam epitaxy , 1985 .

[6]  T. Fuyuki,et al.  Heteroepitaxial Growth of InGaP on Si with InGaP/GaP Step-graded Buffer Layers , 1997 .

[7]  S. Datta,et al.  Heterogeneous integration of enhancement mode in0.7ga0.3as quantum well transistor on silicon substrate using thin (les 2 μm) composite buffer architecture for high-speed and low-voltage ( 0.5 v) logic applications , 2007, 2007 IEEE International Electron Devices Meeting.

[8]  M. Umeno,et al.  Dislocation generation mechanisms for GaP on Si grown by metalorganic chemical vapor deposition , 1993 .

[9]  W. K. Liu,et al.  Strain relaxation and dislocation filtering in metamorphic high electron mobility transistor structures grown on GaAs substrates , 2001 .

[10]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[11]  K. Asai,et al.  Lattice relaxation of GaAs islands grown on Si(100) substrate , 1997 .

[12]  Ueda Takashi,et al.  Reduction of threading dislocations in GaAs on Si by the use of intermediate GaAs buffer layers prepared under high V–III ratios , 1999 .

[13]  J. Kavalieros,et al.  Advanced CMOS transistors in the nanotechnology era for high-performance, low-power logic applications , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[14]  K. Fujikawa,et al.  MOCVD GaAs growth on Ge (100) and Si (100) substrates , 1986 .

[15]  Hao Li,et al.  GaAs-Based Heterostructures on Silicon , 2002 .

[16]  Takeo Maruyama,et al.  GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate. , 2006, Optics express.

[17]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[18]  H. Atwater,et al.  High efficiency InGaAs solar cells on Si by InP layer transfer , 2007 .

[19]  Mark S. Goorsky,et al.  Temperature dependence of hydrogen-induced exfoliation of InP , 2004 .

[20]  M.A. Smith,et al.  Investigations of high-performance GaAs solar cells grown on Ge-Si/sub 1-x/Ge/sub x/-Si substrates , 2005, IEEE Transactions on Electron Devices.

[21]  M. Umeno,et al.  High-quality GaAs on Si substrate by the epitaxial lift-off technique using SeS2 , 1999 .

[22]  H. Yonezu,et al.  Selective epitaxial growth of GaAs on Si with strained short-period superlattices by molecular beam epitaxy under atomic hydrogen irradiation , 2004 .

[23]  M. Sadeghi,et al.  Growth of GaP on Si substrates by solid-source molecular beam epitaxy , 2001 .

[24]  G. Y. Robinson,et al.  Optical properties of GaAs on (100) Si using molecular beam epitaxy , 1984 .

[25]  Y. Kao,et al.  Generation and propagation of threading dislocations in GaAs grown on Si , 1990 .

[26]  Chih-Hung Wu,et al.  Heteroepitaxial growth of GaAs on Si by MOVPE using a-GaAs/a-Si double-buffer layers , 2006 .

[27]  H. Yonezu,et al.  Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si(100) substrates , 1998 .

[28]  Ravi Droopad,et al.  Epitaxial oxide thin films on Si(001) , 2000 .

[29]  Miles V. Klein,et al.  Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy , 1985 .

[30]  Carl L. Dohrman,et al.  Monolithic CMOS-compatible AlGaInP visible LED arrays on silicon on lattice-engineered substrates (SOLES) , 2007 .

[31]  Rajeev J. Ram,et al.  Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GexSi1−x buffer layers , 2003 .

[32]  H. Mori,et al.  Continuous GaAs Film Growth on Epitaxial Si Surface in Initial Stage of GaAs/Si Heteroepitaxy , 1993 .

[33]  S. Wright,et al.  Molecular beam epitaxial growth of GaP on Si , 1984 .

[34]  R. Droopad,et al.  GaAs MESFETs fabricated on Si substrates using a SrTiO3 buffer layer , 2002, IEEE Electron Device Letters.

[35]  Lianxi Zheng,et al.  Photoluminescence Spectrum Study of the GaAs/Si Epilayer Grown by using a Thin Amorphous Si Film as Buffer Layer , 1995 .

[36]  Yuichi Matsushima,et al.  Molecular Beam Epitaxial Growth of InP , 1976 .

[37]  T. Kamijoh,et al.  1.3-/spl mu/m InP-InGaAsP lasers fabricated on Si substrates by wafer bonding , 1997 .

[38]  S. Datta,et al.  Ultrahigh-Speed 0.5 V Supply Voltage $\hbox{In}_{0.7} \hbox{Ga}_{0.3}\hbox{As}$ Quantum-Well Transistors on Silicon Substrate , 2007, IEEE Electron Device Letters.

[39]  M. Carroll,et al.  Defect reduction of GaAs/Si epitaxy by aspect ratio trapping , 2008 .

[40]  A. Norman,et al.  Lattice-mismatched GaAsP Solar Cells Grown on Silicon by OMVPE , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[41]  D. K. Wagner,et al.  Antiphase boundaries in GaAs , 1985 .

[42]  H. Känel,et al.  Characterization of Ge-on-Si virtual substrates and single junction GaAs solar cells , 2006 .

[43]  Jurgen Michel,et al.  Totally relaxed GexSi1−x layers with low threading dislocation densities grown on Si substrates , 1991 .

[44]  D. A. Ahmari,et al.  Fabrication and characterization of InGaP/GaAs heterojunction bipolar transistors on GOI substrates , 2005, IEEE Electron Device Letters.

[45]  S. Deleonibus,et al.  0.12μm P-MOSFETs with High-K and Metal Gate Fabricated in a Si Process Line on 200mm GeOI Wafers , 2007, ESSDERC 2007 - 37th European Solid State Device Research Conference.

[46]  Z. Griffith,et al.  Sub-300 nm InGaAs/InP Type-I DHBTs with a 150 nm collector, 30 nm base demonstrating 755 GHz fmax and 416 GHz fT , 2007, 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials.

[47]  Suman Datta,et al.  Ultrahigh-Speed 0 . 5 V Supply Voltage In 0 . 7 Ga 0 . 3 As Quantum-Well Transistors on Silicon Substrate , 2009 .

[48]  Hadis Morkoç,et al.  Gallium arsenide and other compound semiconductors on silicon , 1990 .

[49]  Low temperature InP/Si wafer bonding , 2004 .

[50]  J. Fastenau,et al.  Molecular beam epitaxy growth of metamorphic high electron mobility transistors and metamorphic heterojunction bipolar transistors on Ge and Ge-on-insulator/Si substrates , 2008 .

[51]  Sophie Bouchoule,et al.  Room temperature laser operation of strained InGaAs/GaAs QW structure monolithically grown by MOCVD on LE-PECVD Ge/Si virtual substrate , 2003 .

[52]  Molecular beam epitaxy of GaAs and AlGaAs on Si , 1984 .

[53]  G. Le Carval,et al.  105 nm Gate length pMOSFETs with high-K and metal gate fabricated in a Si process line on 200 mm GeOI wafers , 2008 .

[54]  Steven A. Ringel,et al.  High-lifetime GaAs on Si using GeSi buffers and its potential for space photovoltaics , 2001 .

[55]  M. Bruel Silicon on insulator material technology , 1995 .

[56]  R. Chau,et al.  Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[57]  O. Levi,et al.  Single-phase growth studies of GaP on Si by solid-source molecular beam epitaxy , 2004 .

[58]  K. Cheng,et al.  Low temperature wafer bonding by spin on glass , 2002 .

[59]  Dmitri Lubyshev,et al.  Comparison of As- and P-based metamorphic buffers for high performance InP heterojunction bipolar transistor and high electron mobility transistor applications , 2004 .

[60]  Yoshio Itoh,et al.  GaAs heteroepitaxy on an epitaxial Si surface with a low‐temperature process , 1993 .

[61]  J. P. Gowers,et al.  Some observations on Ge:GaAs(001) and GaAs:Ge(001) interfaces and films , 1983 .

[62]  Hadis Morkoç,et al.  Material properties of high‐quality GaAs epitaxial layers grown on Si substrates , 1986 .

[63]  C. Tu,et al.  Growth studies of GaP on Si by gas-source molecular beam epitaxy , 1996 .

[64]  H. Atwater,et al.  Ge Layer Transfer To Si For Photovoltaic Applications , 2002 .

[65]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[66]  H. Morkoç,et al.  GaAs/Ge/GaAs heterostructures by molecular beam epitaxy , 1990 .

[67]  H. Kroemer,et al.  Molecular beam epitaxial growth of GaAs on Si(211) , 1985 .

[68]  J. Curless,et al.  Development of integrated heterostructures on silicon by MBE , 2002, International Conference on Molecular Bean Epitaxy.

[69]  C. L. Dohrman,et al.  Fabrication of Silicon on Lattice-Engineered Substrate (SOLES) as a Platform for Monolithic Integration of CMOS and Optoelectronic Devices , 2006, 2006 International SiGe Technology and Device Meeting.

[70]  E. Fitzgerald,et al.  Dual junction GaInP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage , 2006, IEEE Electron Device Letters.

[71]  A. Torabi,et al.  High indium metamorphic HEMT on a GaAs substrate , 2002, International Conference on Molecular Bean Epitaxy.

[72]  H. Atwater,et al.  GaInP/GaAs dual junction solar cells on Ge/Si epitaxial templates , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[73]  Y. Takano,et al.  Reduction of threading dislocations by InGaAs interlayer in GaAs layers grown on Si substrates , 1998 .

[74]  H. Mori,et al.  New hydride vapor phase epitaxy for GaP growth on Si , 1987 .

[75]  T. Signamarcheix,et al.  Fabrication and characterisation of 200 mm germanium-on-insulator (GeOI) substrates made from bulk germanium , 2006 .

[76]  R. Urata,et al.  Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches , 2004, IEEE Journal of Quantum Electronics.

[77]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[78]  G. A. Antypas,et al.  Glass-sealed GaAs-AlGaAs transmission photocathode , 1975 .

[79]  Yu. B. Bolkhovityanov,et al.  Crystal perfection of GaP films grown on Si substrates by solid-source MBE with atomic hydrogen , 2009 .

[80]  Steven A. Ringel,et al.  Single‐junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers , 2002 .

[81]  C. L. Dohrman,et al.  High gain AlGaAs∕GaAs heterojunction bipolar transistor fabricated on SiGe∕Si substrate , 2007 .

[82]  M. Yamaguchi Dislocation density reduction in heteroepitaxial III-V compound films on Si substrates for optical devices , 1991 .

[83]  Frederic Allibert,et al.  Germanium-on-insulator (GeOI) substrates—A novel engineered substrate for future high performance devices , 2006 .

[84]  S. Sugahara,et al.  Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance , 2008, IEEE Transactions on Electron Devices.

[85]  Chun-Yen Chang,et al.  High-speed GaAs metal gate semiconductor field effect transistor structure grown on a composite Ge/GexSi1-x/Si substrate , 2007 .

[86]  Performance and potential of germanium on insulator field-effect transistors , 2006 .

[87]  Atomic-layer-deposited Al2O3/GaAs metal-oxide-semiconductor field-effect transistor on Si substrate using aspect ratio trapping technique , 2008 .

[88]  J. Lee,et al.  Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates , 1987 .

[89]  G. Wang,et al.  Improvement of the MOCVD-grown InGaP -on-Si towards high-efficiency solar cell application , 2001 .

[90]  S. Senz,et al.  Fundamental issues in wafer bonding , 1999 .

[91]  Alexander Kvit,et al.  Biaxial compression in GaAs thin films grown on Si , 1995 .

[92]  Di Liang,et al.  A distributed feedback silicon evanescent laser. , 2008, Optics express.

[93]  Reduced buckling in one dimension versus two dimensions of a compressively strained film on a compliant substrate , 2006 .

[94]  Masahiro Akiyama,et al.  Growth of Single Domain GaAs Layer on (100)-Oriented Si Substrate by MOCVD , 1984 .

[95]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[96]  U. Gösele,et al.  Semiconductor wafer bonding , 1998 .

[97]  E. Jalaguier,et al.  III–V layer transfer onto silicon and applications , 2005 .

[98]  William W. Clark,et al.  Optoelectronic device performance on reduced threading dislocation density GaAs/Si , 2001 .

[99]  H. Usui,et al.  Morphology and lattice coherency in GaAs nanocrystals grown on Si(100) surface , 2006 .

[100]  Eugene A. Fitzgerald,et al.  Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques , 2004 .

[101]  E. A. Fitzgerald,et al.  Monolithic integration of III-V optical interconnects on Si using SiGe virtual substrates , 2002 .

[102]  I. Moerman,et al.  Comparison of MOVPE grown GaAs solar cells using different substrates and group-V precursors , 2003 .

[103]  Band discontinuity measurements of the wafer bonded InGaAs/Si heterojunction , 2007 .

[104]  Wei Wang,et al.  Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100) , 1984 .

[105]  E. Fitzgerald,et al.  Novel dislocation structure and surface morphology effects in relaxed Ge/Si-Ge(graded)/Si structures , 1997 .

[106]  J. Boeckl,et al.  Growth and properties of AlGaInP resonant cavity light emitting diodes on Ge∕SiGe∕Si substrates , 2005 .

[107]  M. Umeno,et al.  Characterization of epitaxially grown GaAs on Si substrates with III‐V compounds intermediate layers by metalorganic chemical vapor deposition , 1985 .

[108]  T. Soga,et al.  Tilt Deformation of Metalorganic Chemical Vapor Deposition Grown GaP on Si Substrate , 1992 .

[109]  Low Temperature, High Strength, Wafer‐to‐Wafer Bonding , 1992 .

[110]  Ryutaro Maeda,et al.  Direct bonding of two crystal substrates at room temperature by Ar-beam surface activation , 2006 .

[111]  Hadis Morkoç,et al.  High-κ dielectrics and advanced channel concepts for Si MOSFET , 2008 .

[112]  Pallab Bhattacharya,et al.  Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon. , 2008, Optics express.

[113]  Osama M. Nayfeh,et al.  Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations , 2006, IBM J. Res. Dev..

[114]  T. Alford,et al.  High crystalline-quality III-V layer transfer onto Si substrate , 2008 .

[115]  D. Lang,et al.  GaAs‐on‐Si: Improved growth conditions, properties of undoped GaAs, high mobility, and fabrication of high‐performance AlGaAs/GaAs selectively doped heterostructure transistors and ring oscillators , 1990 .

[116]  Yoshio Itoh,et al.  Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained‐layer superlattices , 1989 .

[117]  M. Yamaguchi,et al.  Analysis of strained‐layer superlattice effects on dislocation density reduction in GaAs on Si substrates , 1989 .

[118]  Steven A. Ringel,et al.  Toward device-quality GaAs growth by molecular beam epitaxy on offcut Ge/Si1−xGex/Si substrates , 1998 .

[119]  C. L. Dohrman,et al.  Heteroepitaxial growth of GaAs on (100) Ge/Si using migration enhanced epitaxy , 2008 .

[120]  Thomas A. Langdo,et al.  Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing , 1998 .

[121]  A. Nath,et al.  Studies on MOVPE growth of GaP epitaxial layer on Si(001) substrate and effects of annealing , 2006 .

[122]  Thomas A. Langdo,et al.  High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers , 1998 .

[123]  D. Hirsch,et al.  MOVPE growth of GaAs on Ge substrates by inserting a thin low temperature buffer layer , 2006 .

[124]  Zetian Mi,et al.  High-Performance $\hbox{In}_{0.5}\hbox{Ga}_{0.5} \hbox{As/GaAs}$ Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters , 2007, IEEE Transactions on Electron Devices.