Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans

Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. DOI: http://dx.doi.org/10.7554/eLife.07493.001

[1]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[2]  R. Blakemore Magnetotactic bacteria , 1975, Science.

[3]  H. Mouritsen,et al.  Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird , 2014, Nature.

[4]  A. Popper,et al.  Structure–function relationships in fish otolith organs , 2000 .

[5]  J. T. Pierce,et al.  Identifying Cellular and Molecular Mechanisms for Magnetosensation. , 2017, Annual review of neuroscience.

[6]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[7]  B. Heller Circular Statistics in Biology, Edward Batschelet. Academic Press, London & New York (1981), 371, Price $69.50 , 1983 .

[8]  M. Novak,et al.  Relationship between soil CO2 concentrations and forest-floor CO2 effluxes , 2005 .

[9]  Markus Reichstein,et al.  Modeling the vertical soil organic matter profile using Bayesian parameter estimation , 2012 .

[10]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[11]  Leon Avery,et al.  Dietary choice behavior in Caenorhabditis elegans , 2006, Journal of Experimental Biology.

[12]  B. Moskowitz Biomineralization of magnetic minerals , 1995 .

[13]  K. Kuroda,et al.  Propulsive force of Paramecium as revealed by the video centrifuge microscope. , 1989, Experimental cell research.

[14]  Jonathan T. Pierce-Shimomura,et al.  The burrowing behavior of the nematode Caenorhabditis elegans: a new assay for the study of neuromuscular disorders , 2015, Genes, brain, and behavior.

[15]  Jonathan T. Pierce-Shimomura,et al.  Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans , 2014, Proceedings of the National Academy of Sciences.

[16]  D. Schüler Magnetoreception and magnetosomes in bacteria , 2007 .

[17]  D. Schüler,et al.  Polarity of bacterial magnetotaxis is controlled by aerotaxis through a common sensory pathway , 2014, Nature Communications.

[18]  G. B. Dalrymple,et al.  Reversals of the Earth's Magnetic Field. , 1964, Science.

[19]  Jonathan,et al.  Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis 1 elegans 2 3 , 2015 .

[20]  E. Charnov Optimal foraging, the marginal value theorem. , 1976, Theoretical population biology.

[21]  M. Cohen The function of receptors in the statocyst of the lobster Homarus americanus , 1955, The Journal of physiology.

[22]  R. Frankel,et al.  Magneto-aerotaxis in marine coccoid bacteria. , 1997, Biophysical journal.

[23]  Brian Hamilton,et al.  The US/UK World Magnetic Model for 2010-2015 , 2010 .

[24]  D. Keays,et al.  An Iron-Rich Organelle in the Cuticular Plate of Avian Hair Cells , 2013, Current Biology.

[25]  G. S. Benham,et al.  Vertical Distribution of Soil-Inhabiting Microarthropods in an Agricultural Habitat in California , 1977 .

[26]  Sönke Johnsen,et al.  The physics and neurobiology of magnetoreception , 2005, Nature Reviews Neuroscience.

[27]  G. Stroink,et al.  Uniform magnetic field produced by three, four, and five square coils , 1983 .

[28]  Taejoon Kong,et al.  Characterizing the Effect of Static Magnetic Fields on C. elegans Using Microfluidics , 2015 .

[29]  Jung Ho Je,et al.  3-D Worm Tracker for Freely Moving C. elegans , 2013, PloS one.

[30]  Paul Pichler,et al.  No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening , 2014, Proceedings of the National Academy of Sciences.

[31]  E. L. Brannon,et al.  Magnetic field detection in sockeye salmon , 1981 .

[32]  K. Loyet,et al.  Novel Ca2+-binding Protein (CAPS) Related to UNC-31 Required for Ca2+-activated Exocytosis* , 1997, The Journal of Biological Chemistry.

[33]  Yun Lu,et al.  Glia Are Essential for Sensory Organ Function in C. elegans , 2008, Science.

[34]  J. Hartley,et al.  DNA cloning using in vitro site-specific recombination. , 2000, Genome research.

[35]  Hitoshi Inada,et al.  Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans , 2006, Genetics.

[36]  M. Chalfie,et al.  The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals , 2005, Nature Neuroscience.

[37]  Navin Pokala,et al.  Neurons Detect Increases and Decreases in Oxygen Levels Using Distinct Guanylate Cyclases , 2009, Neuron.

[38]  Mario de Bono,et al.  A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans , 2008, Proceedings of the National Academy of Sciences.

[39]  J. Kirschvink,et al.  Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments. , 1992, Bioelectromagnetics.

[40]  J. Dobson,et al.  Biogenic magnetite in the nematode Caenorhabditis elegans , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[41]  Scott J. Davis,et al.  2012 Landes Bioscience. Do not distribute. Coordination of behavioral hierarchies during environmental transitions in Caenorhabditis elegans , 2012 .

[42]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[43]  A. M. Roberts The mechanics of gravitaxis in Paramecium , 2010, Journal of Experimental Biology.

[44]  J. Bessereau,et al.  [C. elegans: of neurons and genes]. , 2003, Medecine sciences : M/S.

[45]  M. Chalfie,et al.  Eukaryotic mechanosensitive channels. , 2010, Annual review of biophysics.

[46]  M. Novak,et al.  Relationship between soil CO 2 concentrations and forest-floor CO 2 effluxes , 2004 .

[47]  Y. Ohshima,et al.  The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons , 2003, Development.

[48]  S. Edwards,et al.  A Novel Molecular Solution for Ultraviolet Light Detection in Caenorhabditis elegans , 2008, PLoS biology.

[49]  R. Muheim,et al.  Polarized light modulates light-dependent magnetic compass orientation in birds , 2016, Proceedings of the National Academy of Sciences.

[50]  K. Lohmann,et al.  GEOMAGNETIC ORIENTATION OF LOGGERHEAD SEA TURTLES: EVIDENCE FOR AN INCLINATION COMPASS , 1993 .

[51]  J. Vivanco,et al.  Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria , 2005, Planta.

[52]  Benoit Ladoux,et al.  Running Worms: C. elegans Self-Sorting by Electrotaxis , 2011, PloS one.

[53]  M. de Bono,et al.  Neuronal and molecular substrates for optimal foraging in Caenorhabditis elegans , 2011, Proceedings of the National Academy of Sciences.

[54]  R. Kerr,et al.  Intracellular Ca2+ imaging in C. elegans. , 2006, Methods in molecular biology.

[55]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[56]  R. Gegear,et al.  A magnetic compass aids monarch butterfly migration , 2014, Nature Communications.

[57]  M. Félix,et al.  The natural history of Caenorhabditis elegans , 2010, Current Biology.

[58]  Cori Bargmann,et al.  Invertebrate nociception: behaviors, neurons and molecules. , 2004, Journal of neurobiology.

[59]  S. Ward Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Chalfie,et al.  The DEG/ENaC Protein MEC-10 Regulates the Transduction Channel Complex in Caenorhabditis elegans Touch Receptor Neurons , 2011, The Journal of Neuroscience.

[61]  J. Prot Migration of plant-parasitic nematodes towards plant roots , 1980 .

[62]  A. Vidal-Gadea,et al.  Magnetic orientation in C. elegans relies on the integrity of the villi of the AFD magnetosensory neurons , 2016, Journal of Physiology-Paris.

[63]  Aravinthan D. T. Samuel,et al.  Neural Circuits Mediate Electrosensory Behavior in Caenorhabditis elegans , 2007, The Journal of Neuroscience.

[64]  S. Brenner,et al.  The Caenorhabditis elegans unc-13 gene product is a phospholipid-dependent high-affinity phorbol ester receptor. , 1992, The Biochemical journal.

[65]  J. Fassbinder,et al.  Evidence of biogenic greigite (ferrimagnetic Fe3S4) in soil , 1994 .

[66]  M. Félix,et al.  The Natural Biotic Environment of Caenorhabditis elegans , 2017, Genetics.

[67]  Le-Qing Wu,et al.  Neural Correlates of a Magnetic Sense , 2012, Science.

[68]  Steven M. Reppert,et al.  Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism , 2010, Nature.

[69]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[70]  James R. Anderson,et al.  A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans , 2014, eLife.

[71]  D. Filingeri Humidity sensation, cockroaches, worms, and humans: are common sensory mechanisms for hygrosensation shared across species? , 2015, Journal of neurophysiology.

[72]  E. Campero-Littlewood,et al.  Coil Systems to Generate Uniform Magnetic Field Volumes , 2010 .

[73]  I. Mori Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. , 1999, Annual review of genetics.

[74]  J. Auwerx,et al.  The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease , 2014, Journal of Experimental Biology.

[75]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[76]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[77]  E. C. Dougherty,et al.  Possible Significance of Free-living Nematodes in Genetic Research , 1948, Nature.

[78]  Ikue Mori,et al.  Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans , 1996, Neuron.

[79]  Cori Bargmann,et al.  odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl , 1996, Cell.

[80]  M. de Bono,et al.  Temperature, Oxygen, and Salt-Sensing Neurons in C. elegans Are Carbon Dioxide Sensors that Control Avoidance Behavior , 2011, Neuron.

[81]  R. Blakemore,et al.  South-seeking magnetotactic bacteria in the Southern Hemisphere , 1980, Nature.