Semi-Analytical method for the pricing of barrier options in case of time-dependent parameters (with Matlab® codes)

Abstract A Semi-Analytical method for pricing of Barrier Options (SABO) is presented. The method is based on the foundations of Boundary Integral Methods which is recast here for the application to barrier option pricing in the Black-Scholes model with time-dependent interest rate, volatility and dividend yield. The validity of the numerical method is illustrated by several numerical examples and comparisons.

[1]  Peter A. Forsyth,et al.  Convergence remedies for non-smooth payoffs in option pricing , 2003 .

[2]  V. Spokoiny,et al.  Estimation of time dependent volatility via local change point analysis , 2004 .

[3]  H. C. Lee,et al.  A simple approach for pricing barrier options with time-dependent parameters , 2003 .

[4]  P. Wilmott Derivatives: The Theory and Practice of Financial Engineering , 1998 .

[5]  Alessandra Aimi,et al.  Numerical integration schemes for space–time hypersingular integrals in energetic Galerkin BEM , 2010, Numerical Algorithms.

[6]  P. Wilmott,et al.  Option pricing: Mathematical models and computation , 1994 .

[7]  Francesco Rapisarda Barrier Options on Underlyings with Time-Dependent Parameters: A Perturbation Expansion Approach , 2005 .

[8]  P. Forsyth,et al.  PDE methods for pricing barrier options , 2000 .

[9]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[10]  Paul Schneider,et al.  Pricing options with Green's functions when volatility, interest rate and barriers depend on time , 2008 .

[11]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[12]  Vadim Linetsky,et al.  Pricing Options in Jump-Diffusion Models: An Extrapolation Approach , 2008, Oper. Res..

[13]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[14]  Cho-Hoi Hui,et al.  Valuing Double Barrier Options With Time-Dependent Parameters by Fourier Series Expansion , 2007, IMECS.

[15]  Luca Vincenzo Ballestra,et al.  A very fast and accurate boundary element method for options with moving barrier and time-dependent rebate , 2014 .

[16]  Frank Cuypers Tools for Computational Finance , 2003 .

[17]  Gianluca Fusai,et al.  Practical Problems in the Numerical Solution of PDE's in Finance , 2002 .

[18]  Aleksandar Mijatovic,et al.  Local time and the pricing of time-dependent barrier options , 2008, Finance Stochastics.

[19]  A Gu,et al.  Breaking down barriers , 2018, Nature Astronomy.

[20]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[21]  Francesco Rapisarda Pricing Barriers on Underlyings with Time-Dependent Parameters , 2005 .

[22]  D. Hunter Convergence analysis of Crank–Nicolson and Rannacher time-marching , 2006 .

[23]  Cornelis W. Oosterlee,et al.  A Fourier-Based Valuation Method for Bermudan and Barrier Options under Heston's Model , 2011, SIAM J. Financial Math..

[24]  Guido Germano,et al.  Spitzer Identity, Wiener-Hopf Factorization and Pricing of Discretely Monitored Exotic Options , 2016, Eur. J. Oper. Res..

[25]  S. Sanfelici,et al.  Fast Numerical Pricing of Barrier Options under Stochastic Volatility and Jumps , 2016, SIAM J. Appl. Math..

[26]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[27]  Chiara Guardasoni,et al.  A boundary element approach to barrier option pricing in Black–Scholes framework , 2016, Int. J. Comput. Math..

[28]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .