Direct estimations of linear and nonlinear functionals of a quantum state.
暂无分享,去创建一个
M. Horodecki | P. Horodecki | A. Ekert | L. Kwek | D. Oi | C. Alves
[1] Dirk Bouwmeester,et al. The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation , 2010, Physics and astronomy online library.
[2] V Vedral,et al. Geometric phases for mixed states in interferometry. , 2000, Physical review letters.
[3] Horodecki. Unified approach to quantum capacities: towards quantum noisy coding theorem , 2000, Physical review letters.
[4] M. Horodecki,et al. Reduction criterion of separability and limits for a class of distillation protocols , 1999 .
[5] E. Knill,et al. Power of One Bit of Quantum Information , 1998, quant-ph/9802037.
[6] M. Horodecki,et al. Inseparable Two Spin- 1 2 Density Matrices Can Be Distilled to a Singlet Form , 1997 .
[7] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[8] Barenco,et al. Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[9] D. Deutsch. Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[10] Philip E. Gill,et al. Practical optimization , 1981 .
[11] S. Pancharatnam,et al. Generalized theory of interference, and its applications , 1956 .