Local Grading of Learners

We propose a technique of localized grading of weak classifiers. This technique identifies local regions having similar characteristics and then uses grading of weak classifiers to describe the relationship between the data characteristics and the target class. Our experiment for several UCI datasets shows that the proposed combining method outperforms other combining methods we tried as well as any base classifier.

[1]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[2]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[3]  Sotiris B. Kotsiantis,et al.  Local voting of weak classifiers , 2005, Int. J. Knowl. Based Intell. Eng. Syst..

[4]  Louis Vuurpijl,et al.  An overview and comparison of voting methods for pattern recognition , 2002, Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition.

[5]  Pedro M. Domingos,et al.  On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.

[6]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[7]  David W. Aha,et al.  Lazy Learning , 1997, Springer Netherlands.

[8]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[9]  Sally Jo Cunningham,et al.  MetaData for Database Mining , 1996 .

[10]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[13]  Bernhard Pfahringer,et al.  Locally Weighted Naive Bayes , 2002, UAI.

[14]  Bernard Zenko,et al.  Is Combining Classifiers Better than Selecting the Best One , 2002, ICML.

[15]  Robert C. Holte,et al.  Very Simple Classification Rules Perform Well on Most Commonly Used Datasets , 1993, Machine Learning.

[16]  Bernard Zenko,et al.  Is Combining Classifiers with Stacking Better than Selecting the Best One? , 2004, Machine Learning.

[17]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[18]  Ching Y. Suen,et al.  Application of majority voting to pattern recognition: an analysis of its behavior and performance , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[19]  Sotiris B. Kotsiantis,et al.  Preventing Student Dropout in Distance Learning Using Machine Learning Techniques , 2003, KES.

[20]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[21]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[22]  Cullen Schaffer,et al.  Selecting a classification method by cross-validation , 1993, Machine Learning.

[23]  Chris Mellish,et al.  Advances in Instance Selection for Instance-Based Learning Algorithms , 2002, Data Mining and Knowledge Discovery.

[24]  Jerome H. Friedman,et al.  DATA MINING AND STATISTICS: WHAT''S THE CONNECTION , 1997 .

[25]  Pat Langley,et al.  Induction of One-Level Decision Trees , 1992, ML.

[26]  Daniela Giovanna Calò,et al.  Data Mining and Statistics: what's the connection? , 2009 .

[27]  Chuanyi Ji,et al.  Combinations of Weak Classifiers , 1996, NIPS.

[28]  Johannes Fürnkranz,et al.  An Evaluation of Grading Classifiers , 2001, IDA.

[29]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Ian H. Witten,et al.  Issues in Stacked Generalization , 2011, J. Artif. Intell. Res..

[31]  Andrew W. Moore,et al.  Locally Weighted Learning for Control , 1997, Artificial Intelligence Review.