Measuring the integrated Sachs-Wolfe effect

Context. One of the main challenges of modern cosmology is to understand the nature of the mysterious dark energy that causes the cosmic acceleration. The integrated Sachs-Wolfe (ISW) effect is sensitive to dark energy, and if detected in a universe where modified gravity and curvature are excluded, presents an independent signature of dark energy. The ISW effect occurs on large scales where cosmic variance is high and where owing to the Galactic confusion we lack large amounts of data in the CMB as well as large-scale structure maps. Moreover, existing methods in the literature often make strong assumptions about the statistics of the underlying fields or estimators. Together these effects can severely limit signal extraction. Aims. We aim to define an optimal statistical method for detecting the ISW effect that can handle large areas of missing data and minimise the number of underlying assumptions made about the data and estimators. Methods. We first review current detections (and non-detections) of the ISW effect, comparing statistical subtleties between existing methods, and identifying several limitations. We propose a novel method to detect and measure the ISW signal. This method assumes only that the primordial CMB field is Gaussian. It is based on a sparse inpainting method to reconstruct missing data and uses a bootstrap technique to avoid assumptions about the statistics of the estimator. It is a complete method, which uses three complementary statistical methods. Results. We apply our method to Euclid-like simulations and show we can expect a ∼7σ model-independent detection of the ISW signal with WMAP7-like data, even when considering missing data. Other tests return ∼5σ detection levels for a Euclid-like survey. We find that detection levels are independent from whether the galaxy field is normally or lognormally distributed. We apply our method to the 2 Micron All Sky Survey (2MASS) and WMAP7 CMB data and find detections in the 1.0−1.2σ range, as expected from our simulations. As a by-product, we have also reconstructed the full-sky temperature ISW field from the 2MASS data. Conclusions. We present a novel technique based on sparse inpainting and bootstrapping, which accurately detects and reconstructs the ISW effect.

[1]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[2]  Shaun Cole,et al.  Full‐sky map of the ISW and Rees–Sciama effect from Gpc simulations , 2010, 1003.0974.

[3]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[4]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[5]  Torsten A. Ensslin,et al.  Optimal integrated Sachs–Wolfe detection and joint likelihood for cosmological parameter estimation , 2008, 0807.0464.

[6]  Adam Amara,et al.  Optimal Surveys for Weak Lensing Tomography , 2006, astro-ph/0610127.

[7]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[8]  Nabila Aghanim,et al.  Optimising large galaxy surveys for ISW detection , 2008, 0802.0983.

[9]  Antony Lewis,et al.  Likelihood Analysis of CMB Temperature and Polarization Power Spectra , 2008, 0801.0554.

[10]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[11]  Fermilab,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. VI. Sloan Digital Sky Survey Spectrograph Observations , 2001, astro-ph/0103228.

[12]  J. D. McEwen,et al.  Probing dark energy with steerable wavelets through correlation of WMAP and NVSS local morphological measures , 2007, 0704.0626.

[13]  Frank Haberl,et al.  Candidate Isolated Neutron Stars and Other Optically Blank X-Ray Fields Identified from the ROSAT All-Sky and Sloan Digital Sky Surveys , 2006 .

[14]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[15]  John A. Peacock,et al.  An estimate of the local integrated Sachs–Wolfe signal and its impact on cosmic microwave background anomalies , 2010 .

[16]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[17]  David N. Spergel,et al.  LARGE-ANGLE COSMIC MICROWAVE BACKGROUND ANISOTROPIES IN AN OPEN UNIVERSE , 1994 .

[18]  Karl Glazebrook,et al.  The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations , 2005 .

[19]  S. Matarrese,et al.  A reassessment of the evidence of the Integrated Sachs–Wolfe effect through the WMAP–NVSS correlation , 2008, 0802.0084.

[20]  Jason D. McEwen,et al.  Detection of the integrated Sachs–Wolfe effect and corresponding dark energy constraints made with directional spherical wavelets , 2007 .

[21]  J. MacKinnon,et al.  The power of bootstrap and asymptotic tests , 2006 .

[22]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[23]  J. Cardoso,et al.  A full sky, low foreground, high resolution CMB map from WMAP , 2008, 0807.0773.

[24]  S. Boughn,et al.  A detection of the integrated Sachs–Wolfe effect , 2004, astro-ph/0404470.

[25]  Mark Trodden,et al.  Cosmology of generalized modified gravity models , 2005 .

[26]  Emmanuel Flachaire,et al.  Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap , 2005, Comput. Stat. Data Anal..

[27]  Andrew J. Connolly,et al.  Measuring the Matter Density Using Baryon Oscillations in the SDSS , 2006, astro-ph/0608635.

[28]  Asantha Cooray,et al.  Secondary non-Gaussianity and cross-correlation analysis , 2009, 0907.3229.

[29]  Carlo Baccigalupi,et al.  The high redshift Integrated Sachs-Wolfe effect , 2009, 0907.4753.

[30]  E. Boldt,et al.  The cosmic X-ray background , 1979 .

[31]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .

[32]  R. Sachs,et al.  Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .

[33]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[34]  Ofer Lahav,et al.  Cross-correlation of 2MASS and WMAP 3: implications for the integrated Sachs–Wolfe effect , 2007 .

[35]  F. Sylos Labini,et al.  Absence of significant cross-correlation between WMAP and SDSS , 2010 .

[36]  ScienceDirect Computational statistics & data analysis , 1983 .

[37]  M. Halpern,et al.  First Year Wilkinson Microwave Anisotropy Probe Observations: Dark Energy Induced Correlation with Radio Sources , 2003, astro-ph/0305097.

[38]  Carlos Hernandez-Monteagudo,et al.  Implementation of a Fourier matched filter in CMB analyses: application to ISW studies , 2008, 0805.3710.

[39]  Yi Wang,et al.  A theory of a spot , 2010, 1006.5021.

[40]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[41]  Carlos Hernandez-Monteagudo,et al.  Revisiting the WMAP-NVSS angular cross correlation - a skeptic's view , 2009, 0909.4294.

[42]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[43]  A. Doroshkevich,et al.  Large Scale Structure in the SDSS Galaxy Survey , 2002 .

[44]  Emmanuel Flachaire,et al.  The wild bootstrap, tamed at last , 2001 .

[45]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[46]  Shirley Ho,et al.  Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications , 2008, 0801.0642.

[47]  Pablo Fosalba,et al.  Measurement of the gravitational potential evolution from the cross‐correlation between WMAP and the APM Galaxy Survey , 2003, astro-ph/0305468.

[48]  N. G. Turok,et al.  Correlations Between the Cosmic X-ray and Microwave Backgrounds: Constraints on a Cosmological Constant , 1998 .

[49]  C. Bachoc,et al.  Applied and Computational Harmonic Analysis Tight P-fusion Frames , 2022 .

[50]  Y. Suto,et al.  Probability Distribution Function of Cosmological Density Fluctuations from a Gaussian Initial Condition: Comparison of One-Point and Two-Point Lognormal Model Predictions with N-Body Simulations , 2001, astro-ph/0105218.

[51]  Robert Crittenden,et al.  A correlation between the cosmic microwave background and large-scale structure in the Universe , 2004, Nature.

[52]  Jean-Luc Starck,et al.  Reconstruction of the cosmic microwave background lensing for Planck , 2010 .

[53]  James G. MacKinnon,et al.  Inference via kernel smoothing of bootstrap P values , 2007, Comput. Stat. Data Anal..

[54]  Yannick Mellier,et al.  Report by the ESA-ESO Working Group on Fundamental Cosmology , 2006, astro-ph/0610906.

[55]  Adam D. Myers,et al.  Combined analysis of the integrated Sachs-Wolfe effect and cosmological implications , 2008, 0801.4380.

[56]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[57]  Yong-Seon Song,et al.  Large scale structure of f(R) gravity , 2007 .

[58]  Jean-Luc Starck,et al.  Morphological Component Analysis and Inpainting on the Sphere: Application in Physics and Astrophysics , 2007 .

[59]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[60]  Mark C. Neyrinck,et al.  A MAP OF THE INTEGRATED SACHS–WOLFE SIGNAL FROM LUMINOUS RED GALAXIES , 2008, 0812.1025.

[61]  T. Giannantonio,et al.  Constraining dark energy with cross-correlated CMB and large scale structure data , 2005 .

[62]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[63]  J. Fadili,et al.  CMB data analysis and sparsity , 2008, 0804.1295.

[64]  G. Efstathiou Myths and truths concerning estimation of power spectra: the case for a hybrid estimator , 2003 .

[65]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[66]  George Efstathiou,et al.  Galaxy correlations on large scales , 1990 .

[67]  M. Strauss,et al.  Cross - correlation of the Cosmic Microwave Background with the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources , 2003, astro-ph/0308260.

[68]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[69]  Enrique Gaztañaga,et al.  New light on Dark Cosmos , 2006 .

[70]  P. Vielva,et al.  Cross-correlation of the cosmic microwave background and radio galaxies in real, harmonic and wavelet spaces: detection of the integrated Sachs–Wolfe effect and dark energy constraints , 2004 .

[71]  Alexander G. Gray,et al.  High redshift detection of the integrated Sachs-Wolfe effect , 2006 .

[72]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[73]  Pablo Fosalba,et al.  Error analysis in cross‐correlation of sky maps: application to the Integrated Sachs–Wolfe detection , 2007, astro-ph/0701393.

[74]  N. Turok,et al.  Looking for a cosmological constant with the Rees-Sciama effect. , 1996, Physical review letters.

[75]  E. Mammen Bootstrap and Wild Bootstrap for High Dimensional Linear Models , 1993 .

[76]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[77]  David Schlegel,et al.  Correlating the CMB with luminous red galaxies: The Integrated Sachs-Wolfe effect , 2005 .

[78]  M. Halpern,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP *) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2011 .

[79]  Lavinia Heisenberg,et al.  Parameter estimation biases due to contributions from the Rees-Sciama effect to the integrated Sachs-Wolfe spectrum , 2010, 1010.1096.

[80]  Domenico Marinucci,et al.  Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy , 2006 .

[81]  François-Xavier Dupé,et al.  An Optimal Approach for Measuring the Integrated Sachs-Wolfe Effect , 2010 .

[82]  Jean-Luc Starck,et al.  Light on dark matter with weak gravitational lensing , 2009, IEEE Signal Processing Magazine.

[83]  J. A. Peacock,et al.  Integrated Sachs–Wolfe measurements with photometric redshift surveys: 2MASS results and future prospects , 2009, 0909.2494.

[84]  University of Sydney,et al.  Cross-correlating WMAP5 with 1.5 million LRGs: a new test for the ISW effect , 2009, 0911.1352.

[85]  S. Boughn,et al.  Cross correlation of the cosmic microwave background with radio sources: constraints on an accelerating universe. , 2001, Physical review letters.

[86]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[87]  Ali Kinkhabwala,et al.  New Constraint on Open Cold-Dark-Matter Models , 1999 .

[88]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[89]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[90]  J. Fadili,et al.  FAst STatistics for weak Lensing (FASTLens): fast method for weak lensing statistics and map making , 2008, 0804.4068.

[91]  Adam Amara,et al.  iCosmo: an interactive cosmology package , 2008, 0810.1285.