Laccase-based biosensors for detection of phenolic compounds

[1]  Erdan Gu,et al.  A Novel Fiber Optic Biosensor for the Determination of Adrenaline Based on Immobilized Laccase Catalysis , 2008 .

[2]  A. Ghindilis,et al.  Laccase-based biosensor for determination of polyphenols: determination of catechols in tea. , 1992, Biosensors & bioelectronics.

[3]  S. Bhadauria,et al.  Performance of nanopolyaniline-fungal enzyme based biosensor for water pollution , 2011 .

[4]  W. Peczyńska-Czoch,et al.  Laccase immobilization on copolymer of butyl acrylate and ethylene glycol dimethacrylate , 2007 .

[5]  O. Fatibello‐Filho,et al.  Biosensor based on laccase immobilized on microspheres of chitosan crosslinked with tripolyphosphate , 2008 .

[6]  Jaafar Abdullah,et al.  Immobilization of tyrosinase in chitosan film for an optical detection of phenol , 2006 .

[7]  S. Cunha,et al.  Assessment of bisphenol A and bisphenol B in canned vegetables and fruits by gas chromatography–mass spectrometry after QuEChERS and dispersive liquid–liquid microextraction , 2013 .

[8]  Yoshiko Okubo,et al.  Bibliometric indicators and analysis of research systems , 1997 .

[9]  Jairton Dupont,et al.  Biomonitoring of methomyl pesticide by laccase inhibition on sensor containing platinum nanoparticles in ionic liquid phase supported in montmorillonite , 2011 .

[10]  K. Piontek,et al.  Crystal Structure of a Laccase from the FungusTrametes versicolor at 1.90-Å Resolution Containing a Full Complement of Coppers* , 2002, The Journal of Biological Chemistry.

[11]  F. Vianello,et al.  A high sensitivity amperometric biosensor using a monomolecular layer of laccase as biorecognition element. , 2004, Biosensors & bioelectronics.

[12]  Wei Chen,et al.  Immobilized Laccase on Activated Poly(Vinyl Alcohol) Microspheres For Enzyme Thermistor Application , 2014, Applied Biochemistry and Biotechnology.

[13]  A. Telefoncu,et al.  Effects of mediators on the laccase biosensor response in paracetamol detection , 2006, Biotechnology and applied biochemistry.

[14]  Sang-June Choi,et al.  The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. , 2009, Journal of hazardous materials.

[15]  G. S. Wilson,et al.  Electrochemical Biosensors: Recommended Definitions and Classification , 1999, Biosensors & bioelectronics.

[16]  L. M. Lagrimini,et al.  Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. , 1998, Analytical chemistry.

[17]  Wenbo Zhao,et al.  Laccase biosensor based on phytic acid modification of nanostructured SiO₂ surface for sensitive detection of dopamine. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[18]  Y. Shim,et al.  Direct electrochemistry of laccase immobilized on au nanoparticles encapsulated-dendrimer bonded conducting polymer: application for a catechin sensor. , 2008, Analytical chemistry.

[19]  De Quan,et al.  Characterization of an amperometric laccase electrode covalently immobilized on platinum surface , 2004 .

[20]  J. Sanz,et al.  Autoindicating optical properties of laccase as the base of an optical biosensor film for phenol determination , 2012, Analytical and Bioanalytical Chemistry.

[21]  C. Ripoll,et al.  Bisphenol-A disruption of the endocrine pancreas and blood glucose homeostasis. , 2008, International journal of andrology.

[22]  C. Pundir,et al.  An amperometric biosensor based on laccase immobilized onto nickel nanoparticles/carboxylated multiwalled carbon nanotubes/polyaniline modified gold electrode for determination of phenolic content in fruit juices , 2012 .

[23]  S. Shleev,et al.  Comparison of physico-chemical characteristics of four laccases from different basidiomycetes. , 2004, Biochimie.

[24]  Lei Ding,et al.  Novel phenolic biosensor based on a magnetic polydopamine-laccase-nickel nanoparticle loaded carbon nanofiber composite. , 2014, ACS applied materials & interfaces.

[25]  J. Kulys,et al.  Antioxidants determination with laccase. , 2007, Talanta.

[26]  Shaojun Dong,et al.  Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes-chitosan composite. , 2006, Biosensors & bioelectronics.

[27]  Damià Barceló,et al.  Environmental applications of analytical biosensors , 1996 .

[28]  S. Lele,et al.  Laccase: Properties and applications , 2009, BioResources.

[29]  A. Franzoi,et al.  A novel support for laccase immobilization: cellulose acetate modified with ionic liquid and application in biosensor for methyldopa detection. , 2011, Biosensors & bioelectronics.

[30]  M. L. Mena,et al.  Laccase Biosensor Based on N‐Succinimidyl‐3‐Thiopropionate‐Functionalized Gold Electrodes , 2005 .

[31]  Guohui Li,et al.  Facile fabrication of gold nanoparticle on zein ultrafine fibers and their application for catechol biosensor , 2015 .

[32]  M. Cardosi Biosensors : Frieder Scheller and Florian Schubert Elsevier Science Publishers, PO Box 211, 1000 AE, Amsterdam, The Netherlands 1992, DM315, ISBN 0-444-98783-5 , 1992 .

[33]  O. Fatibello‐Filho,et al.  Synergic effect studies of the bi-enzymatic system laccase-peroxidase in a voltammetric biosensor for catecholamines. , 2003, Talanta.

[34]  P. Baldrian Fungal laccases - occurrence and properties. , 2006, FEMS microbiology reviews.

[35]  Zirong Wu,et al.  A new amperometric method for rapid detection of Escherichia coli density using a self-assembled monolayer-based bienzyme biosensor , 2006 .

[36]  Qingji Xie,et al.  Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film. , 2009, Biosensors & bioelectronics.

[37]  G. Zeng,et al.  Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks , 2008, Analytical and bioanalytical chemistry.

[38]  E. A. Zaitseva,et al.  An Amperometric Biosensor Based on Laccase Immobilized in Polymer Matrices for Determining Phenolic Compounds , 2005 .

[39]  J. Soloducho,et al.  Hybrid phenol biosensor based on modified phenoloxidase electrode , 2011 .

[40]  V. Faraco,et al.  Laccases: a never-ending story , 2010, Cellular and Molecular Life Sciences.

[41]  Justin Jordaan,et al.  Advances in enzyme immobilisation , 2009, Biotechnology Letters.

[42]  L. Gorton,et al.  Flow-injection analysis of phenols at a graphite electrode modified with co-immobilised laccase and tyrosinase , 1995 .

[43]  Huaidong Zhou,et al.  Levels and spatial distribution of chlorophenols - 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol in surface water of China. , 2008, Chemosphere.

[44]  L. Setti,et al.  Laccase catalyzed-oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols , 1999 .

[45]  Simone Morais,et al.  Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. , 2013, Talanta.

[46]  D. Rochefort,et al.  Physical immobilization of laccase on an electrode by means of poly(ethyleneimine) microcapsules , 2008 .

[47]  C. Pundir,et al.  Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode. , 2012, Analytical biochemistry.

[48]  D. Schlosser,et al.  Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. , 2005, Microbiology.

[49]  G. Zeng,et al.  A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. , 2007, Biosensors & bioelectronics.

[50]  Vicente P. Guerrero-Bote,et al.  World scientific production on renewable energy, sustainability and the environment , 2012 .

[51]  G. Rossini,et al.  Degradation and Detoxification of Chlorophenols in Continuous‐Flow Fixed‐Bed Aerobic Reactors , 2011 .

[52]  D. Goldfarb,et al.  Azide binding to the trinuclear copper center in laccase and ascorbate oxidase. , 1999, European journal of biochemistry.

[53]  J. Dupont,et al.  Biosensor based on platinum nanoparticles dispersed in ionic liquid and laccase for determination of adrenaline , 2009 .

[54]  Shanshan Shi,et al.  A Bibliometric Analysis of Anaerobic Digestion for Butanol Production Research Trends , 2012 .

[55]  Li Zhang,et al.  A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs-doped screen-printed electrode , 2012, Chemistry Central Journal.

[56]  J. Cole,et al.  Spectroscopic and chemical studies of the laccase trinuclear copper active site: geometric and electronic structure , 1990 .

[57]  E. Ferapontova,et al.  A 1.76 V hybrid Zn-O2 biofuel cell with a fungal laccase-carbon cloth biocathode , 2012 .

[58]  Niina J. Ronkainen,et al.  Electrochemical biosensors. , 2010, Chemical Society reviews.

[59]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[60]  R. Lal Integrated biosensors: promises and problems☆ , 1992 .

[61]  L. Gorton,et al.  CHARACTERIZATION OF GRAPHITE ELECTRODES MODIFIED WITH LACCASE FROM TRAMETES VERSICOLOR AND THEIR USE FOR BIOELECTROCHEMICAL MONITORING OF PHENOLIC COMPOUNDS IN FLOW INJECTION ANALYSIS , 2003 .

[62]  F. Scheller,et al.  New enzyme sensors for morphine and codeine based on morphine dehydrogenase and laccase , 1999 .

[63]  D. Leech,et al.  Amperometric Detection of Catecholamine Neurotransmitters Using Electrocatalytic Substrate Recycling at a Laccase Electrode , 2005 .

[64]  V. Cruz,et al.  Trends in literature on new oilseed crops and related species: Seeking evidence of increasing or waning interest , 2012 .

[65]  Yu-Wei Chang,et al.  Characteristics and trends of research articles authored by researchers affiliated with institute of chemical engineering in Taiwan , 2012 .

[66]  S. Campuzano,et al.  Electrochemical estimation of the polyphenol index in wines using a laccase biosensor. , 2006, Journal of agricultural and food chemistry.

[67]  Danila Moscone,et al.  Laccase biosensor based on screen-printed electrode modified with thionine-carbon black nanocomposite, for Bisphenol A detection , 2013 .

[68]  Zaida Chinchilla-Rodríguez,et al.  Coverage analysis of Scopus: A journal metric approach , 2007, Scientometrics.

[69]  Rajesh K. Pillania RETRACTED: Innovation research in India: A multidisciplinary literature review , 2012 .

[70]  W. Shin,et al.  Amperometric Detection of Catechol and Catecholamines by Immobilized Laccase from DeniLite , 2004 .

[71]  G. Bayramoglu,et al.  Immobilization of laccase onto spacer-arm attached non-porous poly(GMA/EGDMA) beads: application for textile dye degradation. , 2009, Bioresource technology.

[72]  J. Kochana,et al.  Tyrosinase/laccase bienzyme biosensor for amperometric determination of phenolic compounds , 2008 .

[73]  Devender,et al.  An amperometric biosensor based on laccase immobilized onto Fe₃O₄NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract. , 2012, Enzyme and microbial technology.

[74]  Sergey Shleev,et al.  Direct electron transfer between copper-containing proteins and electrodes. , 2005, Biosensors & bioelectronics.

[75]  Mu-Shang Yin,et al.  Fifteen years of grey system theory research: A historical review and bibliometric analysis , 2013, Expert Syst. Appl..

[76]  Gabriel Lucian Radu,et al.  Laccase–MWCNT–chitosan biosensor—A new tool for total polyphenolic content evaluation from in vitro cultivated plants , 2010 .

[77]  Nelson Durán,et al.  Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review , 2002 .

[78]  W. Shin,et al.  Sensing Characteristics of Tyrosinase Immobilized and Tyrosinase, Laccase Co-immobilized Platinum Electrodes , 2004 .

[79]  Jairton Dupont,et al.  Development of biosensors containing laccase and imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid for the determination of rutin. , 2009, Analytica chimica acta.

[80]  María Desamparados Mifsud Corts Inmovilización de enzimas , 2014 .

[81]  L. Gorton,et al.  Use of laccase-modified electrode for amperometric detection of plant flavonoids , 2004 .

[82]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[83]  S. Bhadauria,et al.  Development of Biosensor for Phenol Detection Using Agarose―Guar Gum Based Laccases Extracted from Pleurotus ostreatus , 2010 .

[84]  Murilo Santhiago,et al.  l-Cysteine determination in pharmaceutical formulations using a biosensor based on laccase from Aspergillus oryzae , 2007 .

[85]  Yoshiko Okubo,et al.  Bibliometric indicators and analysis of research systems : methods and examples , 1997 .

[86]  J. Soloducho,et al.  Electrochemical laccase sensor based on 3-methylthiophene/3-thiopheneacetic acid/bis(3,4-ethylenedioxythiophene)-N-nonylacridone as a new polymer support , 2014 .

[87]  A. Franzoi,et al.  Biosensor for luteolin based on silver or gold nanoparticles in ionic liquid and laccase immobilized in chitosan modified with cyanuric chloride. , 2009, The Analyst.

[88]  Wei Sun,et al.  Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode , 2012 .

[89]  M. A. Sanromán,et al.  Recent developments and applications of immobilized laccase. , 2013, Biotechnology advances.

[90]  J. Torrecilla,et al.  Quantification of phenolic compounds in olive oil mill wastewater by artificial neural network/laccase biosensor. , 2007, Journal of agricultural and food chemistry.

[91]  S. Gheewala,et al.  Biodegradation of chlorinated phenolic compounds. , 1996, Biotechnology advances.

[92]  K R Rogers,et al.  Recent advances in biosensor techniques for environmental monitoring. , 2006, Analytica chimica acta.

[93]  A. Radoi,et al.  Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content. , 2013, Talanta.

[94]  Musa Ahmad,et al.  Penggunaan enzim tirosinase pegun dalam filem sol-gel untuk pengesanan fenol dengan kaedah optik , 2005 .

[95]  C S Pundir,et al.  Fabrication of polyphenol biosensor based on laccase immobilized on copper nanoparticles/chitosan/multiwalled carbon nanotubes/polyaniline-modified gold electrode. , 2011, Journal of biotechnology.

[96]  Musa Ahmad,et al.  An Optical Biosensor based on Immobilization of Laccase and MBTH in Stacked Films for the Detection of Catechol , 2007, Sensors.

[97]  T. Sakurai,et al.  A novel mixed valence form of Rhus vernicifera laccase and its reaction with dioxygen to give a peroxide intermediate bound to the trinuclear center. , 2001, Journal of biochemistry.

[98]  Consolación Gil,et al.  Scientific production of renewable energies worldwide: An overview , 2013 .

[99]  Yuh-Shan Ho,et al.  TOP-CITED ARTICLES IN CHEMICAL ENGINEERING IN SCIENCE CITATION INDEX EXPANDED: A BIBLIOMETRIC ANALYSIS , 2012 .

[100]  V. Renganathan,et al.  Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae , 1995, Applied and environmental microbiology.

[101]  William Putzbach,et al.  Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review , 2013, Sensors.

[102]  Pedro Ibarra-Escutia,et al.  Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. , 2010, Talanta.

[103]  J English,et al.  Methods of Identification , 1953, The Ulster medical journal.

[104]  Cristina Tortolini,et al.  Laccase–polyazetidine prepolymer–MWCNT integrated system: Biochemical properties and application to analytical determinations in real samples , 2010 .

[105]  Lauro T. Kubota,et al.  Development of a laccase-based flow injection electrochemical biosensor for the determination of phenolic compounds and its application for monitoring remediation of Kraft E1 paper mill effluent , 2002 .

[106]  O. Fatibello‐Filho,et al.  Determination of catecholamines in pharmaceutical formulations using a biosensor modified with a crude extract of fungi laccase (Pleurotus ostreatus) , 2003 .

[107]  K. Temsamani,et al.  A comparison of three amperometric phenoloxidase-Sonogel-Carbon based biosensors for determination of polyphenols in beers. , 2008, Food chemistry.

[108]  S. Dong,et al.  Electrochemical catalysis and thermal stability characterization of laccase-carbon nanotubes-ionic liquid nanocomposite modified graphite electrode. , 2007, Biosensors & bioelectronics.

[109]  A. Franzoi,et al.  Biosensor based on laccase and an ionic liquid for determination of rosmarinic acid in plant extracts. , 2009, Talanta.

[110]  Wei Zhi,et al.  Constructed wetlands, 1991-2011: a review of research development, current trends, and future directions. , 2012, The Science of the total environment.

[111]  G. Guebitz,et al.  Influence of structure on dye degradation with laccase mediator systems , 2004 .

[112]  R. Pilloton,et al.  Thick film sensors based on laccases from different sources immobilized in polyaniline matrix , 2004 .

[113]  C. Tortolini,et al.  Laccase-based biosensor for the determination of polyphenol index in wine. , 2010, Talanta.

[114]  L. Gorton,et al.  Amperometric detection of mono- and diphenols at Cerrena unicolor laccase-modified graphite electrode: correlation between sensitivity and substrate structure. , 2005, Talanta.

[115]  M. Amatatongchai,et al.  Rapid Screening Method for Assessing Total Phenolic Content Using Simple Flow Injection System with Laccase based- biosensor , 2013 .

[116]  Roberto Pilloton,et al.  A disposable Laccase-Tyrosinase based biosensor for amperometric detection of phenolic compounds in must and wine , 2010 .

[117]  Nicole Jaffrezic-Renault,et al.  Amperometric enzyme biosensors: Past, present and future , 2008 .

[118]  Dawei Li,et al.  Laccase Biosensor Based on Electrospun Copper/Carbon Composite Nanofibers for Catechol Detection , 2014, Sensors.

[119]  Erika Kress-Rogers,et al.  Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment , 1996 .

[120]  Johann Faccelo Osma Cruz,et al.  Biosensors: Recent advances and mathematical challenges , 2014 .

[121]  Chen Tan,et al.  Sensitive chemiluminescence immunoassay for E. coli O157:H7 detection with signal dual-amplification using glucose oxidase and laccase. , 2014, Analytical chemistry.

[122]  Rakesh Kumar Sharma,et al.  Ligninolytic Fungal Laccases and Their Biotechnological Applications , 2010, Applied biochemistry and biotechnology.

[123]  Gautam Gupta,et al.  Laccase Biosensor on Monolayer-Modified Gold Electrode , 2003 .

[124]  E. Solomon,et al.  Multicopper Oxidases and Oxygenases. , 1996, Chemical reviews.

[125]  M. Arroyo Inmovilización de enzimas. Fundamentos, métodos y aplicaciones , 1998 .

[126]  Lauro T. Kubota,et al.  Electrochemical biosensor-based devices for continuous phenols monitoring in environmental matrices , 2002 .

[127]  Juozas Kulys,et al.  Amperometric biosensors based on recombinant laccases for phenols determination. , 2003, Biosensors & bioelectronics.

[128]  P. Goswami,et al.  Highly sensitive and stable laccase based amperometric biosensor developed on nano-composite matrix for detecting pyrocatechol in environmental samples , 2014 .

[129]  T. Cajthaml,et al.  Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. , 2009, Chemosphere.

[130]  S. Shleev,et al.  Laccase-mediator systems and their applications: A review , 2007, Applied Biochemistry and Microbiology.

[131]  Peter Gluchowski,et al.  F , 1934, The Herodotus Encyclopedia.

[132]  H Hörtnagl,et al.  Catecholamine detection using enzymatic amplification. , 1997, Biosensors & bioelectronics.

[133]  H. Claus Laccases: structure, reactions, distribution. , 2004, Micron.

[134]  Jaafar Abdullah,et al.  Stacked films immobilization of MBTH in nafion/sol-gel silicate and horseradish peroxidase in chitosan for the determination of phenolic compounds , 2006, Analytical and bioanalytical chemistry.

[135]  G. Zeng,et al.  Laccase biosensor using magnetic multiwalled carbon nanotubes and chitosan/silica hybrid membrane modified magnetic carbon paste electrode , 2011 .

[136]  Xinhua Xu,et al.  Development of amperometric laccase biosensor through immobilizing enzyme in copper-containing ordered mesoporous carbon (Cu-OMC)/chitosan matrix , 2010 .

[137]  T. E. Abraham,et al.  Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase. , 2005, Biosensors & bioelectronics.

[138]  T. Rocha-Santos,et al.  High performance liquid chromatography coupled to an optical fiber detector coated with laccase for screening catecholamines in plasma and urine. , 2009, Journal of chromatography. A.

[139]  A C Duarte,et al.  Optical fiber biosensor coupled to chromatographic separation for screening of dopamine, norepinephrine and epinephrine in human urine and plasma. , 2009, Talanta.

[140]  S. Chough,et al.  Viscosity and binder composition effects on tyrosinase-based carbon paste electrode for detection of phenol and catechol. , 2001, Talanta.

[141]  Sandra A. V. Eremia,et al.  Laccase-Nafion Based Biosensor for the Determination of Polyphenolic Secondary Metabolites , 2010 .

[142]  A. Teixeira,et al.  A bibliometric account of the evolution of EE in the last two decades: Is ecological economics (becoming) a post-normal science? , 2011 .

[143]  T. Omura Studies on laccases of lacquer trees. I. Comparison of laccases obtained from Rhus vernicifera and Rhus succedanea. , 1961, Journal of biochemistry.

[144]  Maria Lepore,et al.  Biosensors for phenolic compounds: The catechol as a substrate model , 2006 .

[145]  A. Bandyopadhyay,et al.  Bibliometric analysis of carbon dioxide reduction research trends during 1999–2009 , 2012 .

[146]  Jeffrey R. Lane,et al.  Improved recovery of active recombinant laccase from maize seed , 2004, Applied Microbiology and Biotechnology.