Optimal Magnetic Shield Design with Second-Order Cone Programming

In this paper, we consider a continuous version of the convex network flow problem which involves the integral of the Euclidean norm of the flow and its square in the objective function. A discretized version of this problem can be cast as a secondorder cone program, for which efficient primal-dual interior-point algorithms have been developed recently. An optimal magnetic shielding design problem of the MAGLEV train, a new bullet train under development in Japan, is formulated as the continuous convex network flow problem, and is solved with the primal-dual interiorpoint algorithm. Taking advantage of its efficiency and stability, the algorithm is further applied to robust design of the magnetic shielding.

[1]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[2]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[3]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[4]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[5]  土谷 隆,et al.  Optimal Magnetic Shield Design with Second-Order Cone Programming (最適化の数理とアルゴリズム研究集会報告集) , 2002 .

[6]  Takashi Tsuchiya,et al.  Polynomial convergence of primal-dual algorithms for the second-order cone program based on the MZ-family of directions , 2000, Math. Program..

[7]  D. J. Epstein,et al.  Magnetic shielding , 1965 .

[8]  F. Alizadeh,et al.  Associative Algebras, Symmetric Cones and Polynomial Time Interior Point Algorithms , 1998 .

[9]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[10]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[11]  Farid Alizadeh,et al.  Associative and Jordan Algebras, and Polynomial Time Interior-Point Algorithms for Symmetric Cones , 2001, Math. Oper. Res..

[12]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[13]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[14]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[15]  L. Faybusovich Linear systems in Jordan algebras and primal-dual interior-point algorithms , 1997 .

[16]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[17]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[18]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[19]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[20]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[21]  Masao Iri,et al.  Continuum approximation to dense networks and its application to the analysis of urban road networks , 1982 .

[22]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[23]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[24]  Yu. A. Medvedev,et al.  Jordan A-algebras , 1987 .

[25]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[26]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[27]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[28]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[29]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[30]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[31]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[32]  Takashi Sasakawa,et al.  Preliminary design of magnetic shielding by FEM , 1997 .

[33]  M. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Nu , 1994 .

[34]  T. Tsuchiya A Convergence Analysis of the Scaling-invariant Primal-dual Path-following Algorithms for Second-ord , 1998 .