Self-Embeddings of Computable Trees
暂无分享,去创建一个
James H. Schmerl | Manuel Lerman | Bjørn Kjos-Hanssen | Stephen Binns | Reed Solomon | B. Kjos-Hanssen | M. Lerman | J. Schmerl | S. Binns | Reed Solomon
[1] Linda Jean Richter. Degrees of Structures , 1981, Journal of Symbolic Logic.
[2] David Ross. Tree self-embeddings , 1989 .
[3] Russell Miller,et al. The Computable Dimension of I-Trees of Infinite Height , 2004, Journal of Symbolic Logic.
[4] Rodney G. Downey,et al. The proof-theoretic strength of the Dushnik-Miller Theorem for countable linear orders , 1999 .
[5] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[6] Математика. Well-quasi-ordering , 2010 .
[7] R. Soare,et al. Π⁰₁ classes and degrees of theories , 1972 .
[8] R. Soare. Recursively enumerable sets and degrees , 1987 .
[9] Eberhard Herrmann. Infinite Chains and Antichains in Computable Partial Orderings , 2001, J. Symb. Log..
[10] Ben Dushnik,et al. Concerning similarity transformations of linearly ordered sets , 1940 .
[11] J. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s conjecture , 1960 .
[12] Rodney G. Downey,et al. On self-embeddings of computable linear orderings , 2006, Ann. Pure Appl. Log..
[13] Steffen Lempp,et al. Computable categoricity of trees of finite height , 2005, Journal of Symbolic Logic.
[14] E. Corominas,et al. On better quasi-ordering countable trees , 1985, Discret. Math..