A proposal for a global task planning architecture using the RoboEarth cloud based framework

As robotic systems become more and more capable of assisting in human domains, methods are sought to compose robot executable plans from abstract human instructions. To cope with the semantically rich and highly expressive nature of human instructions, Hierarchical Task Network planning is often being employed along with domain knowledge to solve planning problems in a pragmatic way. Commonly, the domain knowledge is specific to the planning problem at hand, impeding re-use. Therefore this paper conceptualizes a global planning architecture, based on the worldwide accessible RoboEarth cloud framework. This architecture allows environmental state inference and plan monitoring on a global level. To enable plan re-use for future requests, the RoboEarth action language has been adapted to allow semantic matching of robot capabilities with previously composed plans.

[1]  Moritz Tenorth,et al.  The RoboEarth language: Representing and exchanging knowledge about actions, objects, and environments , 2012, 2012 IEEE International Conference on Robotics and Automation.

[2]  Moritz Tenorth,et al.  RoboEarth Action Recipe Execution , 2012, IAS.

[3]  Hector Muñoz-Avila,et al.  Adaptation of Hierarchical Task Network Plans , 2007, FLAIRS.

[4]  John D. Lee,et al.  Human-Automation Collaboration in Dynamic Mission Planning: A Challenge Requiring an Ecological Approach , 2006 .

[5]  Jorge A. Baier,et al.  HTN Planning with Preferences , 2009, IJCAI.

[6]  Brian C. Williams,et al.  Flexible execution of plans with choice and uncertainty , 2011 .

[7]  Craig Schlenoff,et al.  A robot ontology for urban search and rescue , 2005, KRAS '05.

[8]  Edmund H. Durfee,et al.  A distributed framework for solving the Multiagent Plan Coordination Problem , 2005, AAMAS '05.

[9]  Patrick Doherty,et al.  A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems , 2009, Autonomous Agents and Multi-Agent Systems.

[10]  Carlo Combi,et al.  Conceptual Modeling of Temporal Clinical Workflows , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[11]  Jos Elfring,et al.  Two level world modeling for cooperating robots using a multiple hypotheses filter , 2011, 2011 IEEE International Conference on Robotics and Automation.

[12]  Dana S. Nau,et al.  SHOP2: An HTN Planning System , 2003, J. Artif. Intell. Res..

[13]  Charles Lesire,et al.  A generic framework for anytime execution-driven planning in robotics , 2011, 2011 IEEE International Conference on Robotics and Automation.

[14]  Dana S. Nau,et al.  Web Service Composition with Volatile Information , 2005, SEMWEB.

[15]  Liyang Yu,et al.  Introduction to the semantic web and semantic web services , 2007 .

[16]  Brian Charles Williams,et al.  Drake: An Efficient Executive for Temporal Plans with Choice , 2011, J. Artif. Intell. Res..

[17]  Gerald J. Sussman,et al.  A Computational Model of Skill Acquisition , 1973 .

[18]  Michael Beetz,et al.  Towards semantic robot description languages , 2011, 2011 IEEE International Conference on Robotics and Automation.

[19]  David P. Miller,et al.  Experiences with an architecture for intelligent, reactive agents , 1995, J. Exp. Theor. Artif. Intell..

[20]  Mathijs de Weerdt,et al.  Plan Repair as an Extension of Planning , 2005, ICAPS.

[21]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[22]  Félix Ingrand,et al.  Extending procedural reasoning toward robot actions planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[23]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[24]  A. Herzog,et al.  A3ME - An Agent-Based Middleware Approach for Mixed Mode Environments , 2008, 2008 The Second International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies.

[25]  Mary L. Cummings,et al.  Managing Multiple UAVs through a Timeline Display , 2005 .

[26]  Moritz Tenorth,et al.  RoboEarth - A World Wide Web for Robots , 2011, ICRA 2011.

[27]  Blai Bonet,et al.  Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming , 2003, ICAPS.

[28]  Sébastien Gérard,et al.  Integrating Ontological Domain Knowledge into a Robotic DSL , 2010, MoDELS Workshops.

[29]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[30]  Marco Pistore,et al.  Weak, strong, and strong cyclic planning via symbolic model checking , 2003, Artif. Intell..

[31]  Thomas B. Sheridan,et al.  Telerobotics, Automation, and Human Supervisory Control , 2003 .

[32]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[33]  Javier García,et al.  Planning Multi-Modal Transportation Problems , 2011, ICAPS.

[34]  Carlo Combi,et al.  Towards Temporal Controllabilities for Workflow Schemata , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[35]  Sushil Jajodia,et al.  Temporal Reasoning in Workflow Systems , 2002, Distributed and Parallel Databases.

[36]  Carlo Combi,et al.  Controllability in Temporal Conceptual Workflow Schemata , 2009, BPM.

[37]  Thibault Gateau,et al.  Local Plan Execution and Repair in a Hierarchical Structure of Sub-Teams of Heterogeneous Autonomous Vehicles , 2010 .

[38]  Stefan Edelkamp,et al.  Automated Planning: Theory and Practice , 2007, Künstliche Intell..

[39]  Jason Stanley,et al.  Enabling Sensor Webs by Utilizing SWAMO for Autonomous Operations , 2008 .

[40]  Nico Roos,et al.  Models and methods for plan diagnosis , 2009, Autonomous Agents and Multi-Agent Systems.

[41]  Bernhard Nebel,et al.  Task Planning for an Autonomous Service Robot , 2010, KI.

[42]  Marc Steinberg,et al.  Human system performance metrics for evaluation of mixed-initiative heterogeneous autonomous systems , 2007 .

[43]  Craig A. Knoblock,et al.  PDDL-the planning domain definition language , 1998 .

[44]  Csaba Szepesvári,et al.  Bandit Based Monte-Carlo Planning , 2006, ECML.

[45]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[46]  Nicola Muscettola,et al.  Dynamic Control Of Plans With Temporal Uncertainty , 2001, IJCAI.

[47]  Onn Shehory,et al.  Interleaving Planning and Execution in a Multiagent Team Planning Environment , 2000, Electron. Trans. Artif. Intell..

[48]  Kenneth Baclawski,et al.  Toward Ontology-Based Component Composition , 2001 .

[49]  A. Schulte,et al.  The MMP : A Mixed-Initiative Mission Planning System for the Multi-Aircraft Domain , 2011 .

[50]  Moritz Tenorth,et al.  KNOWROB — knowledge processing for autonomous personal robots , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Luke Hunsberger,et al.  Fixing the Semantics for Dynamic Controllability and Providing a More Practical Characterization of Dynamic Execution Strategies , 2009, 2009 16th International Symposium on Temporal Representation and Reasoning.

[52]  Frederic Py,et al.  A deliberative architecture for AUV control , 2008, 2008 IEEE International Conference on Robotics and Automation.

[53]  Thomas Keller,et al.  PROST: Probabilistic Planning Based on UCT , 2012, ICAPS.

[54]  Jeremy Frank When plans are executed by mice and men , 2010, 2010 IEEE Aerospace Conference.

[55]  Dana S. Nau,et al.  Matching Problem Features with Task Selection for Better Performance in I-ITN Planning , 1998 .

[56]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[57]  Jens Rasmussen,et al.  Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[58]  R. Goldman,et al.  HOTRiDE: Hierarchical Ordered Task Replanning in Dynamic Environments , 2007 .

[59]  Peter Zoeteweij,et al.  A practical evaluation of spectrum-based fault localization , 2009, J. Syst. Softw..

[60]  Geoffrey J. Gordon,et al.  Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees , 2005, ICML.

[61]  Wu,et al.  A Playbook Approach to Variable Autonomy Control: Application for Control of Multiple, Heterogeneous Unmanned Air Vehicles , 2004 .

[62]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[63]  D. Lane,et al.  Improving Multi-AUV Coordination with Hierarchical Blackboard-Based Plan Representation , 2008 .

[64]  Nathanael Chambers,et al.  PLOW: A Collaborative Task Learning Agent , 2007, AAAI.

[65]  James A. Hendler,et al.  HTN planning for Web Service composition using SHOP2 , 2004, J. Web Semant..

[66]  S. Uckun,et al.  A unified information criterion for evaluating probe and test selection , 2008, 2008 International Conference on Prognostics and Health Management.

[67]  Ho-Jin Choi,et al.  Automatically learning robot domain ontology from collective knowledge for home service robots , 2009, 2009 11th International Conference on Advanced Communication Technology.

[68]  Thierry Vidal,et al.  CTP: A New Constraint-Based Formalism for Conditional, Temporal Planning , 2003, Constraints.

[69]  G. J. Kazz,et al.  Mars relay operations: application of the CCSDS Proximity-1 Space Data Link Protocol , 2002 .

[70]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[71]  Moritz Tenorth,et al.  CRAM — A Cognitive Robot Abstract Machine for everyday manipulation in human environments , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[72]  Tim Schmidt,et al.  Pervasive Diagnosis , 2010, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[73]  Hector Muñoz-Avila,et al.  IMPACTing SHOP: Putting an AI Planner Into a Multi-Agent Environment , 2003, Annals of Mathematics and Artificial Intelligence.

[74]  Ronny Hartanto,et al.  Fusing DL Reasoning with HTN Planning , 2008, KI - Künstliche Intelligenz.

[75]  Klas Nilsson,et al.  Knowledge and Skill Representations for Robotized Production , 2011 .

[76]  Andrew Parkes,et al.  The ECSS Packet Utilization Standard and Its Support Tool , 2002 .

[77]  Pete Bonasso Using Discourse to Modify Control Procedures , 2002 .

[78]  Paul Morris,et al.  A Structural Characterization of Temporal Dynamic Controllability , 2006, CP.

[79]  Vijay Kumar,et al.  An architecture for tightly coupled multi-robot cooperation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[80]  Christel Kemke,et al.  Action Representation for Natural Language Interfaces to Agent Systems , 2006, 2006 International Conference on Hybrid Information Technology.

[81]  Quynh-Nhu Numi Tran,et al.  MOBMAS: A methodology for ontology-based multi-agent systems development , 2008, Inf. Softw. Technol..

[82]  Leslie Pack Kaelbling,et al.  Hierarchical task and motion planning in the now , 2011, 2011 IEEE International Conference on Robotics and Automation.