24 – Advanced Nonrigid Registration Algorithms for Image Fusion

This chapter presents an original method to perform nonrigid registration of multimodal images. This iterative algorithm is composed of two steps: the intensity transformation and the geometrical transformation. Two intensity transformation models are proposed, which assume either monofunctional or bifunctional dependence between the intensity values in the images being matched. Both of these models are built using robust estimators to enable precise and accurate transformation solutions. The chapter describes the image registration strategy applied prospectively during several neurosurgical cases. The enhancement provided by intraoperative nonrigid registration to the surgical visualization environment is shown by matching the corticospinal tract of a preoperatively prepared anatomical atlas to the initial and subsequent intraoperative scans of a subject. This matching was carried out prospectively during the neurosurgery, demonstrating the practical value of the approach and its ability to meet the real-time constraints of surgery. The entire image analysis process can be completed in less than 10 min, which has been adequate to display the information to the surgeon.

[1]  Paul A. Viola,et al.  Multi-modal volume registration by maximization of mutual information , 1996, Medical Image Anal..

[2]  Ron Kikinis,et al.  Simulation of Corticospinal Tract Displacement in Patients with Brain Tumors , 2000, MICCAI.

[3]  R. Kikinis,et al.  Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. , 1997, Neurosurgery.

[4]  Ron Kikinis,et al.  3D Image Matching Using a Finite Element Based Elastic Deformation Model , 1999, MICCAI.

[5]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[6]  Ron Kikinis,et al.  Registration of 3-d intraoperative MR images of the brain using a finite-element biomechanical model , 2000, IEEE Transactions on Medical Imaging.

[7]  David Metcalf,et al.  A Digital Brain Atlas for Surgical Planning, Model-Driven Segmentation, and Teaching , 1996, IEEE Trans. Vis. Comput. Graph..

[8]  C L Dumoulin,et al.  Three‐dimensional phase contrast angiography , 1989, Magnetic resonance in medicine.

[9]  J. Moser,et al.  On a partial differential equation involving the Jacobian determinant , 1990 .

[10]  Lawrence H. Staib,et al.  Physical model-based non-rigid registration incorporating statistical shape information , 2000, Medical Image Anal..

[11]  Wilfrid Gangbo An elementary proof of the polar factorization of vector-valued functions , 1994 .

[12]  William Gropp,et al.  PETSc 2.0 users manual , 2000 .

[13]  Thomas S. Huang,et al.  Image processing , 1971 .

[14]  R. Kikinis,et al.  Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging , 1992, Journal of magnetic resonance imaging : JMRI.

[15]  F. Jolesz,et al.  1996 RSNA Eugene P. Pendergrass New Horizons Lecture. Image-guided procedures and the operating room of the future. , 1997, Radiology.

[16]  James C. Gee,et al.  Elastic Matching of Diffusion Tensor Images , 2000, Comput. Vis. Image Underst..

[17]  Nobuhiko Hata,et al.  Rigid and deformable medical image registration for image-guided surgery , 1998 .

[18]  Eero P. Simoncelli Design of multi-dimensional derivative filters , 1994, Proceedings of 1st International Conference on Image Processing.

[19]  N. Ayache,et al.  Fast Non Rigid Matching by Gradient Descent: Study and Improvements of the "Demons" Algorithm , 1999 .

[20]  N. Hata,et al.  An integrated visualization system for surgical planning and guidance using image fusion and an open MR , 2001, Journal of magnetic resonance imaging : JMRI.

[21]  Juan Ruiz-Alzola,et al.  Nonrigid Registration of 3D Scalar, Vector and Tensor Medical Data , 2000, MICCAI.

[22]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[23]  Christos Davatzikos,et al.  Spatial Transformation and Registration of Brain Images Using Elastically Deformable Models , 1997, Comput. Vis. Image Underst..

[24]  Morten Bro-Nielsen,et al.  Surgery Simulation Using fast Finite Elements , 1996, VBC.

[25]  K. Paulsen,et al.  Modeling of Retraction and Resection for Intraoperative Updating of Images , 2001, Neurosurgery.

[26]  F A Jolesz,et al.  An image processing strategy for the quantification and visualization of exercise‐induced muscle MRI signal enhancement , 2000, Journal of magnetic resonance imaging : JMRI.

[27]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[28]  Charles R. Meyer,et al.  Probabilistic Brain Atlas Construction: Thin-Plate Spline Warping via Maximization of Mutual Information , 1999, MICCAI.

[29]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[30]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[31]  Nicholas Ayache,et al.  Three-dimensional multimodal brain warping using the Demons algorithm and adaptive intensity corrections , 2001, IEEE Transactions on Medical Imaging.

[32]  O. Faugeras,et al.  A variational approach to multi-modal image matching , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[33]  Nicholas Ayache,et al.  Unifying maximum likelihood approaches in medical image registration , 2000 .

[34]  J. Moser On the volume elements on a manifold , 1965 .

[35]  David J. Hawkes,et al.  Deformation for Image Guided Interventions Using a Three Component Tissue Model , 1997, IPMI.

[36]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[37]  R. Bajcsy,et al.  Elastic Matching: Continuum Mechanical and Probabilistic Analysis , 1999 .

[38]  Bostjan Likar,et al.  A hierarchical approach to elastic registration based on mutual information , 2001, Image Vis. Comput..

[39]  A G Sorensen,et al.  Diffusion-weighted MR imaging in acute stroke: theoretic considerations and clinical applications. , 1999, AJR. American journal of roentgenology.

[40]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[41]  Colin Studholme,et al.  Steps Toward a Stereo-Camera-Guided Biomechanical Model for Brain Shift Compensation , 2001, IPMI.

[42]  Keith D. Paulsen,et al.  In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery , 2000, IEEE Transactions on Biomedical Engineering.

[43]  Derek L. G. Hill,et al.  Measurement of Intraoperative Brain Surface Deformation Under a Craniotomy , 1998, MICCAI.

[44]  Isabelle Bloch,et al.  Regularization of MR Diffusion Tensor Maps for Tracking Brain White Matter Bundles , 1998, MICCAI.

[45]  Max A. Viergever,et al.  General multimodal elastic registration based on mutual information , 1998, Medical Imaging.

[46]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[47]  G. Marchal,et al.  Multi-modal volume registration by maximization of mutual information , 1997 .

[48]  Ron Kikinis,et al.  A High Performance Computing Approach to the Registration of Medical Imaging Data , 1998, Parallel Comput..

[49]  Daniel Rueckert,et al.  Non-rigid registration using higher-order mutual information , 2000, Medical Imaging.

[50]  Ron Kikinis,et al.  Registration of 3D Intraoperative MR Images of the Brain Using a Finite Element Biomechanical Model , 2001, IEEE Trans. Medical Imaging.

[51]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[52]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[53]  Nicholas Ayache,et al.  The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration , 1998, MICCAI.

[54]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[55]  Karl Rohr On 3D differential operators for detecting point landmarks , 1997, Image Vis. Comput..

[56]  Paul Suetens,et al.  Non-rigid Multimodal Image Registration Using Mutual Information , 1998, MICCAI.

[57]  B. Geiger Three-dimensional modeling of human organs and its application to diagnosis and surgical planning , 1993 .

[58]  N. Hata,et al.  Three-Dimensional Optical Flow Method for Measurement of Volumetric Brain Deformation from Intraoperative MR Images , 2000, Journal of computer assisted tomography.

[59]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[60]  Ron Kikinis,et al.  Adaptive, template moderated, spatially varying statistical classification , 2000, Medical Image Anal..

[61]  Nicholas Ayache,et al.  Understanding the "Demon's Algorithm": 3D Non-rigid Registration by Gradient Descent , 1999, MICCAI.

[62]  R. Kikinis,et al.  Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts , 1998, Brain Research.

[63]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[64]  Benoit M. Macq,et al.  Multiobject segmentation of brain structures in 3D MRI using a computerized atlas , 1999, Medical Imaging.

[65]  Gordon L. Kindlmann,et al.  Tensorlines: advection-diffusion based propagation through diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[66]  Jean-Philippe Thirion,et al.  Fast Non-Rigid Matching of 3D Medical Images , 1995 .

[67]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[68]  Ron Kikinis,et al.  Real-Time Image Segmentation for Image-Guided Surgery , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[69]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[70]  Pierre Hellier,et al.  Multimodal Non-rigid Warping for Correction of Distortions in Functional MRI , 2000, MICCAI.

[71]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[72]  W. Eric L. Grimson,et al.  An Integrated Visualization System for Surgical Planning and Guidance Using Image Fusion and Interventional Imaging , 1999, MICCAI.

[73]  D. Louis Collins,et al.  Non-linear Cerebral Registration with Sulcal Constraints , 1998, MICCAI.

[74]  James S. Duncan,et al.  Real Time 3D Brain Shift Compensation , 1999, IPMI.

[75]  Nobuhiko Hata,et al.  Image Guided Microscopic Surgery System Using Mutual-Information Based Registraion , 1996, VBC.

[76]  M. Cullen,et al.  An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis , 1984 .

[77]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[78]  Isabelle Bloch,et al.  Inferring the Brain Connectivitiy from MR Diffusion Tensor Data , 1999, MICCAI.

[79]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[80]  L. Segel,et al.  Mathematics Applied to Continuum Mechanics , 1977 .

[81]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[82]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[83]  N. Hata,et al.  Serial Intraoperative Magnetic Resonance Imaging of Brain Shift , 2001, Neurosurgery.

[84]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[85]  Jonathan W. Brandt,et al.  Improved Accuracy in Gradient-Based Optical Flow Estimation , 1997, International Journal of Computer Vision.

[86]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[87]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[88]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[89]  O. C. Zienkiewicz,et al.  The Finite Element Method: Basic Formulation and Linear Problems , 1987 .

[90]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[91]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[92]  Alan S. Willsky,et al.  Medical image segmentation via coupled curve evolution equations with global constraints , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[93]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[94]  Juan Ruiz-Alzola,et al.  Nonrigid registration of 3D tensor medical data , 2002, Medical Image Anal..

[95]  Karl Rohr,et al.  Biomedical Modeling of the Human Head for Physically-based, Non-rigid Image Registration , 1999, IEEE Trans. Medical Imaging.

[96]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[97]  K. Paulsen,et al.  A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery , 1999, IEEE Transactions on Biomedical Engineering.

[98]  R Kikinis,et al.  Detection of point landmarks in multidimensional tensor data , 2001, Signal Process..

[99]  M. Y. Wang,et al.  Measurement of Intraoperative Brain Surface Deformation Under a Craniotomy , 1998, MICCAI.

[100]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[101]  Simon R. Arridge,et al.  Non-linear Registration with the Variable Viscosity Fluid Algorithm , 1999, IPMI.

[102]  Simon K. Warfield,et al.  Deformable Modeling for Characterizing Biomedical Shape Changes , 2000, DGCI.