Toward a Common Coordinate Framework for the Human Body

[1]  J Talairach,et al.  Application of stereotactic concepts to the surgery of epilepsy. , 1980, Acta neurochirurgica. Supplementum.

[2]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[3]  T. Anantharaman,et al.  Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[5]  Colin Studholme,et al.  Atlas‐based segmentation of developing tissues in the human brain with quantitative validation in young fetuses , 2010, Human brain mapping.

[6]  Julie Moss,et al.  EMAGE mouse embryo spatial gene expression database: 2014 update , 2013, Nucleic Acids Res..

[7]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[8]  Ilya Kostrikov,et al.  PlaNet - Photo Geolocation with Convolutional Neural Networks , 2016, ECCV.

[9]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[10]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[11]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[12]  W. Fujibuchi,et al.  Development of 3D Tissue Reconstruction Method from Single-cell RNA-seq Data , 2017 .

[13]  Alain Trouvé,et al.  Bayesian template estimation in computational anatomy , 2008, NeuroImage.

[14]  Xavier Pennec,et al.  Sparse Multi-Scale Diffeomorphic Registration: The Kernel Bundle Framework , 2012, Journal of Mathematical Imaging and Vision.

[15]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[16]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[17]  Gabriel Peyré,et al.  Gromov-Wasserstein Averaging of Kernel and Distance Matrices , 2016, ICML.

[18]  Claude Kauffmann,et al.  Computer-aided method for quantification of cartilage thickness and volume changes using MRI: validation study using a synthetic model , 2003, IEEE Transactions on Biomedical Engineering.

[19]  Geoffrey McLennan,et al.  Establishing a normative atlas of the human lung: intersubject warping and registration of volumetric CT images. , 2003, Academic radiology.

[20]  Jayanthi Sivaswamy,et al.  Curvature orientation histograms for detection and matching of vascular landmarks in retinal images , 2009, Medical Imaging.

[21]  Eric A. Hoffman,et al.  Unsupervised Discovery of Spatially-Informed Lung Texture Patterns for Pulmonary Emphysema: The MESA COPD Study , 2017, MICCAI.

[22]  Alejandro F Frangi,et al.  Computational cardiac atlases: from patient to population and back , 2009, Experimental physiology.

[23]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[24]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[25]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[26]  Alan C. Evans,et al.  A three-dimensional MRI atlas of the mouse brain with estimates of the average and variability. , 2005, Cerebral cortex.

[27]  Hongkui Zeng,et al.  Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. , 2015, Methods.

[28]  Eric A. Hoffman,et al.  Adaptive Quantification and Longitudinal Analysis of Pulmonary Emphysema With a Hidden Markov Measure Field Model , 2014, IEEE Transactions on Medical Imaging.

[29]  Xavier Bresson,et al.  Structured Sequence Modeling with Graph Convolutional Recurrent Networks , 2016, ICONIP.

[30]  Cynthia C. Hession,et al.  Div-Seq: Single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons , 2016, Science.

[31]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[32]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[33]  Shila Ghazanfar,et al.  The human body at cellular resolution: the NIH Human Biomolecular Atlas Program , 2019, Nature.

[34]  Hunter B. Fraser,et al.  Ab initio construction of a eukaryotic transcriptome by massively parallel mRNA sequencing , 2009, Proceedings of the National Academy of Sciences.

[35]  J C Mazziotta,et al.  Automated labeling of the human brain: A preliminary report on the development and evaluation of a forward‐transform method , 1997, Human brain mapping.

[36]  Xin Xu,et al.  An MRI-based atlas and database of the developing mouse brain , 2011, NeuroImage.

[37]  I. Amit,et al.  Single-cell spatial reconstruction reveals global division of labor in the mammalian liver , 2016, Nature.

[38]  H. Karcher,et al.  How to conjugateC1-close group actions , 1973 .

[39]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[40]  Bill Hill,et al.  Constrained distance transforms for spatial atlas registration , 2015, BMC Bioinformatics.

[41]  Julie H. Simpson,et al.  BrainAligner: 3D Registration Atlases of Drosophila Brains , 2011, Nature Methods.

[42]  R. Shivdasani,et al.  Boundaries, junctions and transitions in the gastrointestinal tract. , 2011, Experimental cell research.

[43]  R. Baldock,et al.  eMouseAtlas informatics: embryo atlas and gene expression database , 2015, Mammalian Genome.

[44]  Wolfgang M Pauli,et al.  Descriptor : A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei , 2018 .

[45]  Geoffrey McLennan,et al.  Establishing a normative atlas of the human lung: computing the average transformation and atlas construction. , 2012, Academic radiology.

[46]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[47]  Karl Rohr,et al.  Radial basis functions with compact support for elastic registration of medical images , 2001, Image Vis. Comput..

[48]  Nikolaus Rajewsky,et al.  The Drosophila embryo at single-cell transcriptome resolution , 2017, Science.

[49]  D. Louis Collins,et al.  Application of Information Technology: A Four-Dimensional Probabilistic Atlas of the Human Brain , 2001, J. Am. Medical Informatics Assoc..

[50]  Alistair A. Young,et al.  The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart , 2011, Bioinform..

[51]  Alexei A. Efros,et al.  IM2GPS: estimating geographic information from a single image , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[52]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[53]  Nicola K. Wilson,et al.  Resolving Early Mesoderm Diversification through Single Cell Expression Profiling , 2016, Nature.

[54]  Andrew Nishida,et al.  Spatially mapped single-cell chromatin accessibility , 2019, bioRxiv.

[55]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[56]  Nathan Jacobs,et al.  Revisiting IM2GPS in the Deep Learning Era , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[57]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[58]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[59]  Nicolas Bonneel,et al.  Optimal Transport for Computer Graphics and Temporal Coherence of Image Processing Algorithms. (Transport Optimal pour l'Informatique Graphique et Cohérence Temporelle des Algorithmes de Traitement d'Images) , 2018 .

[60]  Jing Bai,et al.  A normalized thoracic coordinate system for atlas mapping in 3D CT images , 2008 .

[61]  Daniel Rueckert,et al.  A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion , 2015, Medical Image Anal..

[62]  Ronald M. Summers,et al.  Anatomical variability of organs via principal factor analysis from the construction of an abdominal probabilistic atlas , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[63]  Dominic Grün,et al.  A Human Liver Cell Atlas reveals Heterogeneity and Epithelial Progenitors , 2019, Nature.

[64]  Caroline Uhler,et al.  Multi-Domain Translation by Learning Uncoupled Autoencoders , 2019, ArXiv.

[65]  Nir Friedman,et al.  Charting a tissue from single-cell transcriptomes , 2018 .

[66]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[67]  H. Seung,et al.  Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging , 2011, Nature Methods.

[68]  J. Marioni,et al.  High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin , 2015, Nature Biotechnology.