Morphology and Number Density of Voids In Hydrogenated Amorphous Silicon: An Ab Initio Study

[1]  Michael N. Kozicki,et al.  Conductive bridging random access memory—materials, devices and applications , 2016 .

[2]  P. Biswas,et al.  Metadynamical Approach to the Generation of Amorphous Structures: The Case of a-Si:H. , 2016 .

[3]  David Alan Drabold,et al.  Force-enhanced atomic refinement: Structural modeling with interatomic forces in a reverse Monte Carlo approach applied to amorphous Si and SiO 2 , 2015 .

[4]  Ling Xu,et al.  a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths , 2015, Scientific Reports.

[5]  P. Biswas,et al.  Nanoscale structure of microvoids in a-Si:H: a first-principles study , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  David Alan Drabold,et al.  Microstructure from joint analysis of experimental data and ab initio interactions: Hydrogenated amorphous silicon , 2014 .

[7]  B. Rech,et al.  Metastable defect formation at microvoids identified as a source of light-induced degradation in a-Si:H. , 2014, Physical review letters.

[8]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[9]  W. Beyer,et al.  Voids in hydrogenated amorphous silicon materials , 2012 .

[10]  Fei Zeng,et al.  Dynamic Processes of Resistive Switching in Metallic Filament-Based Organic Memory Devices , 2012 .

[11]  Qi Liu,et al.  Real‐Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide‐Electrolyte‐Based ReRAM , 2012, Advanced materials.

[12]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[13]  P. Biswas,et al.  Vacancies, microstructure and the moments of nuclear magnetic resonance: the case of hydrogenated amorphous silicon , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[15]  David Alan Drabold,et al.  Network structure and dynamics of hydrogenated amorphous silicon , 2007, 0709.1655.

[16]  W. Beyer Characterization of microstructure in amorphous and microcrystalline Si and related alloys by effusion of implanted helium , 2004 .

[17]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[19]  Chan,et al.  Molecular hydrogen in a-si:H , 2000, Physical review letters.

[20]  Y. Chan,et al.  Photoinduced dehydrogenation of defects in undoped a-si:H using positron annihilation spectroscopy. , 2000, Physical review letters.

[21]  H. Branz HYDROGEN COLLISION MODEL : QUANTITATIVE DESCRIPTION OF METASTABILITY IN AMORPHOUS SILICON , 1999 .

[22]  J. D. Ouwens,et al.  Hydrogen microstructure in hydrogenated amorphous silicon. , 1996, Physical review. B, Condensed matter.

[23]  Han,et al.  New Hydrogen Distribution in a-Si:H: An NMR Study. , 1996, Physical review letters.

[24]  Barkema,et al.  Event-Based Relaxation of Continuous Disordered Systems. , 1996, Physical review letters.

[25]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[26]  Williamson,et al.  Hydrogen solubility and network stability in amorphous silicon. , 1996, Physical review. B, Condensed matter.

[27]  M. Boero,et al.  Influence of hydrogen-bonding configurations on the physical properties of hydrogenated amorphous silicon. , 1994, Physical review. B, Condensed matter.

[28]  R. Suzuki,et al.  Microvoids in a-Si:H and a-SiGe:H alloys , 1994 .

[29]  D. Williamson,et al.  Small-angle x-ray scattering studies of microvoids in amorphous silicon-based semiconductors. Annual subcontract report, 1 February 1992--31 January 1993 , 1994 .

[30]  S. Guha,et al.  Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells , 1992 .

[31]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[32]  Nelson,et al.  Characterization of microvoids in device-quality hydrogenated amorphous silicon by small-angle x-ray scattering and infrared measurements. , 1989, Physical review. B, Condensed matter.

[33]  R. Crandall,et al.  The observation of microvoids in device quality hydrogenated amorphous silicon , 1989 .

[34]  R. Crandall,et al.  Small-angle X-ray scattering studies of microvoids in a-SiC:H and a-Si:H , 1989 .

[35]  O. Sankey,et al.  Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. , 1989, Physical review. B, Condensed matter.

[36]  D. I. Svergun,et al.  Structure Analysis by Small-Angle X-Ray and Neutron Scattering , 1987 .

[37]  Reimer,et al.  Hydrogen microstructure in amorphous hydrogenated silicon. , 1987, Physical Review B (Condensed Matter).

[38]  P. C. Jong,et al.  Helium desorption/permeation from bubbles in silicon: A novel method of void production , 1987 .

[39]  D. Carlson Hydrogenated microvoids and light-induced degradation of amorphous-silicon solar cells , 1986 .

[40]  Pines,et al.  Multiple-quantum NMR study of clustering in hydrogenated amorphous silicon. , 1986, Physical review letters.

[41]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[42]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[43]  J. Boyce,et al.  Orientational ordering and melting of molecular H2 in an a-Si matrix: NMR studies. , 1985, Physical review letters.

[44]  M. Stutzmann,et al.  Solid Hydrogen in Hydrogenated Amorphous Silicon , 1984 .

[45]  H. Löhneysen,et al.  Direct experimental evidence for molecular hydrogen in amorphous Si:H , 1984 .

[46]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[47]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[48]  F. Zernike,et al.  Die Beugung von Röntgenstrahlen in Flüssigkeiten als Effekt der Molekülanordnung , 1927 .

[49]  H. Stiebig,et al.  Annealing Effects of Microstructure in Thin-film Silicon Solar Cell Materials Measured by Effusion of Implanted Rare Gas Atoms , 2011 .

[50]  M. Taguchi,et al.  Development status of high-efficiency HIT solar cells , 2011 .

[51]  J. B. Mann,et al.  Compton Scattering Factors for Spherically Symmetric Free Atoms , 1967 .

[52]  The Aquila Digital Community The Aquila Digital Community Experimentally Constrained Molecular Relaxation: The Case of Experimentally Constrained Molecular Relaxation: The Case of Hydrogenated Amorphous Silicon Hydrogenated Amorphous Silicon , 2022 .

[53]  The Aquila Digital Community The Aquila Digital Community Sculpting the Band Gap: A Computational Approach Sculpting the Band Gap: A Computational Approach , 2022 .

[54]  David Alan Drabold,et al.  The Aquila Digital Community The Aquila Digital Community Inversion of Diffraction Data for Amorphous Materials Inversion of Diffraction Data for Amorphous Materials , 2022 .