High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data

Aerosol Optical Depth (AOD) is crucial for urban air quality assessment. However, the frequently used moderate-resolution imaging spectroradiometer (MODIS) AOD product at 10 km resolution is too coarse to be applied in a regional-scale study. Gaofen-1 (GF-1) wide-field-of-view (WFV) camera data, with high spatial and temporal resolution, has great potential in estimation of AOD. Due to the lack of shortwave infrared (SWIR) band and complex surface reflectivity brought from high spatial resolution, it is difficult to retrieve AOD from GF-1 WFV data with traditional methods. In this paper, we propose an improved AOD retrieval algorithm for GF-1 WFV data. The retrieved AOD has a spatial resolution of 160 m and covers all land surface types. Significant improvements in the algorithm include: (1) adopting an improved clear sky composite method by using the MODIS AOD product to identify the clearest days and correct the background atmospheric effect; and (2) obtaining local aerosol models from long-term CIMEL sun-photometer measurements. Validation against MODIS AOD and ground measurements showed that the GF-1 WFV AOD has a good relationship with MODIS AOD (R2 = 0.66; RMSE = 0.27) and ground measurements (R2 = 0.80; RMSE = 0.25). Nevertheless, the proposed algorithm was found to overestimate AOD in some cases, which will need to be improved upon in future research.

[1]  E. Vermote,et al.  Aerosol retrieval over land from AVHRR data-application for atmospheric correction , 1992, IEEE Trans. Geosci. Remote. Sens..

[2]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[3]  J. Townshend,et al.  An operational atmospheric correction algorithm for Landsat Thematic Mapper imagery over the land , 1997 .

[4]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[5]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[6]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[7]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[8]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[9]  M. McCormick,et al.  Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements , 2005 .

[10]  D. Allen Chu,et al.  Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[12]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[13]  R. Santer,et al.  A surface reflectance model for aerosol remote sensing over land , 2007 .

[14]  A. Lacis,et al.  Past, present, and future of global aerosol climatologies derived from satellite observations: A perspective , 2007 .

[15]  W. Hao,et al.  Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China , 2007 .

[16]  J. Nichol,et al.  Fine Resolution Air Quality Monitoring from a Small Satellite: CHRIS/PROBA , 2008, Sensors.

[17]  J. Jimenez,et al.  Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition , 2009 .

[18]  A. Kokhanovsky,et al.  Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades , 2009 .

[19]  Gao Hailiang Modified DDV method of aerosol optical depth inversion over land surfaces from CBERS02B , 2009 .

[20]  Qinhuo Liu,et al.  Aerosol optical depth retrieval by HJ-1/CCD supported by MODIS surface reflectance data , 2010 .

[21]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[22]  LI Chengcai,et al.  Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China , 2010 .

[23]  J. Ryu,et al.  Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager , 2010 .

[24]  J. Nichol,et al.  An operational MODIS aerosol retrieval algorithm at high spatial resolution, and its application over a complex urban region , 2011 .

[25]  Qiang Zhang,et al.  Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996-2010 , 2011 .

[26]  H. Che,et al.  Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980-2008 , 2011 .

[27]  R. Gautam,et al.  Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010 , 2012 .

[28]  N. Flood,et al.  Limitations of the dense dark vegetation method for aerosol retrieval under Australian conditions , 2012 .

[29]  Liangfu Chen,et al.  Satellite observation of regional haze pollution over the North China Plain , 2012 .

[30]  T. Eck,et al.  An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions , 2012 .

[31]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[32]  B. Holben,et al.  MODIS 3 km aerosol product: applications over land in an urban/suburban region , 2013 .

[33]  Yang Liu,et al.  Retrieval of the Haze Optical Thickness in North China Plain Using MODIS Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[34]  R. Dickinson,et al.  The role of satellite remote sensing in climate change studies , 2013 .

[35]  Maudood N. Khan,et al.  MODIS aerosol optical depth observations over urban areas in Pakistan: quantity and quality of the data for air quality monitoring , 2013 .

[36]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[37]  Gan Zhang,et al.  Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China. , 2014, Journal of environmental sciences.

[38]  Dong L. Wu,et al.  Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction , 2014 .

[39]  Xiaoling Chen,et al.  Improved capabilities of the Chinese high-resolution remote sensing satellite GF-1 for monitoring suspended particulate matter (SPM) in inland waters: Radiometric and spatial considerations , 2015 .

[40]  Wenji Zhao,et al.  Improved aerosol retrieval algorithm using Landsat images and its application for PM10 monitoring over urban areas , 2015 .

[41]  Lunche Wang,et al.  Long-term observations of aerosol optical properties at Wuhan, an urban site in Central China , 2015 .

[42]  K. Moffett,et al.  Remote Sens , 2015 .

[43]  C. Chen,et al.  “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing , 2016, Scientific Reports.

[44]  Xiaoling Chen,et al.  Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems , 2016 .

[45]  Muhammad Bilal,et al.  Validation of MODIS 3 km Resolution Aerosol Optical Depth Retrievals Over Asia , 2016, Remote. Sens..

[46]  Lin Sun,et al.  Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images , 2015, Remote. Sens..

[47]  J. Song,et al.  Assessment of Air Quality Status in Wuhan, China , 2016 .

[48]  Yang Liu,et al.  Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013 , 2015, Environmental health perspectives.