Quantitative profiling of the protein coronas that form around nanoparticles

Nanoparticle applications in biotechnology and biomedicine are steadily increasing. In biological fluids, proteins bind to nanoparticles that form the protein corona, crucially affecting the nanoparticles' biological identity. As the corona affects in vitro and/or in vivo nanoparticle applications, we developed a method to obtain time-resolved protein corona profiles formed on various nanoparticles. After incubation in plasma or a similar biofluid, or after injection into a mouse, the first analytical step is sedimentation of the nanoparticle-protein complexes through a sucrose cushion, thereby allowing analysis of early corona formation time points. Next, corona profiles are visualized by gel electrophoresis and quantitatively analyzed after tryptic digestion using label-free liquid chromatography–high-resolution mass spectrometry. In contrast to other approaches, our established methodology allows the researcher to obtain qualitative and quantitative high-resolution corona signatures. The protocol can be readily extended to the investigation of protein coronas from various nanomaterials (as an example, we applied this protocol to different silica nanoparticles (SiNPs) and polystyrene nanoparticles (PSNPs)). Depending on the number of samples, the protocol from nanoparticle-protein complex recovery to data evaluation takes ∼8–12 d to complete.

[1]  Morteza Mahmoudi,et al.  Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell "vision" versus physicochemical properties of nanoparticles. , 2011, ACS nano.

[2]  Iseult Lynch,et al.  Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. , 2011, Journal of the American Chemical Society.

[3]  Morteza Mahmoudi,et al.  Engineered nanoparticles for biomolecular imaging. , 2011, Nanoscale.

[4]  James L. McGrath,et al.  The influence of protein adsorption on nanoparticle association with cultured endothelial cells. , 2009, Biomaterials.

[5]  Konstantinos Thalassinos,et al.  A comparison of labeling and label-free mass spectrometry-based proteomics approaches. , 2009, Journal of proteome research.

[6]  Stefan Tenzer,et al.  Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics , 2013, Nature Methods.

[7]  Raimo Hartmann,et al.  Temperature: the "ignored" factor at the NanoBio interface. , 2013, ACS nano.

[8]  Phillip C. Wright,et al.  An insight into iTRAQ: where do we stand now? , 2012, Analytical and Bioanalytical Chemistry.

[9]  R. von Klitzing,et al.  Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona. , 2013, Colloids and surfaces. B, Biointerfaces.

[10]  S. K. Sundaram,et al.  Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. , 2007, Toxicological sciences : an official journal of the Society of Toxicology.

[11]  Marina A Dobrovolskaia,et al.  Evaluation of nanoparticle immunotoxicity. , 2009, Nature nanotechnology.

[12]  Philip M. Kelly,et al.  Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. , 2013, Nature nanotechnology.

[13]  R. Müller,et al.  Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[14]  Sara Linse,et al.  Modeling the Time Evolution of the Nanoparticle-Protein Corona in a Body Fluid , 2010, PloS one.

[15]  Giulio Caracciolo,et al.  DNA affects the composition of lipoplex protein corona: A proteomics approach , 2011, Proteomics.

[16]  Giulio Caracciolo,et al.  Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[17]  R. Aebersold,et al.  A High-Confidence Human Plasma Proteome Reference Set with Estimated Concentrations in PeptideAtlas* , 2011, Molecular & Cellular Proteomics.

[18]  Kenneth A. Dawson,et al.  Nanobiotechnology: Nanoparticle coronas take shape , 2011 .

[19]  Marco P Monopoli,et al.  Biomolecular coronas provide the biological identity of nanosized materials. , 2012, Nature nanotechnology.

[20]  Iseult Lynch,et al.  What the cell "sees" in bionanoscience. , 2010, Journal of the American Chemical Society.

[21]  Jack F Douglas,et al.  Interaction of gold nanoparticles with common human blood proteins. , 2010, ACS nano.

[22]  Albert Duschl,et al.  Time evolution of the nanoparticle protein corona. , 2010, ACS nano.

[23]  Birgit Sokull-Klüttgen,et al.  The European Commission's recommendation on the definition of nanomaterial makes an impact , 2012, Nanotoxicology.

[24]  W. Peukert,et al.  Impact of the nanoparticle-protein corona on colloidal stability and protein structure. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[25]  S. Seal,et al.  Fabricated micro-nano devices for in vivo and in vitro biomedical applications. , 2013, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[26]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[27]  Morteza Mahmoudi,et al.  Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. , 2011, Nanoscale.

[28]  Ronald J. Moore,et al.  Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size , 2011, Proteomics.

[29]  K. Dawson,et al.  Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. , 2007, Nano letters.

[30]  Shuk Han Cheng,et al.  Characterization of carbon nanotube protein corona by using quantitative proteomics. , 2013, Nanomedicine : nanotechnology, biology, and medicine.

[31]  R. Müller,et al.  Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. , 2005, Biomaterials.

[32]  T. Webster Interview: Nanomedicine: past, present and future. , 2013, Nanomedicine.

[33]  Stefan Tenzer,et al.  Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. , 2011, ACS nano.

[34]  L. Gethings,et al.  Simplifying the proteome: analytical strategies for improving peak capacity. , 2014, Advances in experimental medicine and biology.

[35]  Bernhard Kuster,et al.  Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present , 2012, Analytical and Bioanalytical Chemistry.

[36]  Brett Larsen,et al.  Label-free quantitative proteomics trends for protein-protein interactions. , 2013, Journal of proteomics.

[37]  P. Chakrabarti,et al.  Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[38]  Iseult Lynch,et al.  The evolution of the protein corona around nanoparticles: a test study. , 2011, ACS nano.

[39]  Kenneth A. Dawson,et al.  Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts , 2008, Proceedings of the National Academy of Sciences.

[40]  Parag Aggarwal,et al.  Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[41]  Niko Hildebrandt,et al.  Quantum-dot-basedFörster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. , 2013, ACS nano.

[42]  Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model , 2013, Alzheimer's Research & Therapy.

[43]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[44]  Michelle Reese Nanotechnology: using co-regulation to bring regulation of modern technologies into the 21st century. , 2013, Health matrix.

[45]  G. Oberdörster,et al.  Nanotoxicology: in Vitro–in Vivo Dosimetry , 2012, Environmental health perspectives.

[46]  Jim E Riviere,et al.  An index for characterization of nanomaterials in biological systems. , 2010, Nature nanotechnology.

[47]  Stefan Tenzer,et al.  Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. , 2013, Nature nanotechnology.

[48]  Sara Linse,et al.  Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. , 2007, Angewandte Chemie.

[49]  Knut Reinert,et al.  Tools for Label-free Peptide Quantification , 2012, Molecular & Cellular Proteomics.

[50]  Bengt Fadeel,et al.  Safety assessment of nanomaterials: implications for nanomedicine. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[51]  R. Müller,et al.  Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[52]  Wolfgang J Parak,et al.  A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. , 2009, Nature nanotechnology.