Which insect species numerically respond to allochthonous inputs?

[1]  N. Kanzaki,et al.  Differential responses of scavenging arthropods and vertebrates to forest loss maintain ecosystem function in a heterogeneous landscape , 2013 .

[2]  C. Palmborg,et al.  The impact of nesting cormorants on plant and arthropod diversity , 2012 .

[3]  P. Hambäck,et al.  The Impact of Cormorants on Plant–Arthropod Food Webs on Their Nesting Islands , 2010, Ecosystems.

[4]  D. Wardle,et al.  Predation of seabirds by invasive rats: multiple indirect consequences for invertebrate communities , 2009 .

[5]  J. Beggs,et al.  Does the presence of burrowing seabirds increase local invertebrate abundance? , 2009 .

[6]  H. Ikeda,et al.  Evolutionary Relationships Among Food Habit, Loss of Flight, and Reproductive Traits: Life-History Evolution in the Silphinae (Coleoptera: Silphidae) , 2008, Evolution; international journal of organic evolution.

[7]  T. Noda,et al.  Effects of material inputs by the Grey Heron Ardea cinerea on forest-floor necrophagous insects and understory plants in the breeding colony , 2006 .

[8]  David O. Carter,et al.  Cadaver decomposition in terrestrial ecosystems , 2006, Naturwissenschaften.

[9]  T. Osono,et al.  Pattern of natural 15N abundance in lakeside forest ecosystem affected by cormorant-derived nitrogen , 2006, Hydrobiologia.

[10]  J. Gibbs,et al.  Silphids in urban forests: Diversity and function , 2004, Urban Ecosystems.

[11]  M. Nagano,et al.  Phenology and habitat use among Nicrophorine beetles of the genus Nicrophorus and Ptomascopus (Coleoptera : Silphidae) , 2003 .

[12]  E. Vidal,et al.  Colonial seabirds change beetle assemblages on a Mediterranean island , 2003 .

[13]  J. Gibbs,et al.  HABITAT FRAGMENTATION AND ARTHROPOD COMMUNITY CHANGE: CARRION BEETLES, PHORETIC MITES, AND FLIES , 2001 .

[14]  G. Polis,et al.  BOTTOM-UP DYNAMICS OF ALLOCHTHONOUS INPUT: DIRECT AND INDIRECT EFFECTS OF SEABIRDS ON ISLANDS , 2000 .

[15]  Josef K. Müller,et al.  Resolving phylogeny at the family level by mitochondrial cytochrome oxidase sequences: phylogeny of carrion beetles (Coleoptera, Silphidae). , 2000, Molecular phylogenetics and evolution.

[16]  Seiji Suzuki,et al.  Competitive interaction and niche differentiation among burying beetles (Silphidae, Nicrophorus) in northern Japan , 1998 .

[17]  A. Holloway,et al.  Relationship between numbers of the endangered American burying beetle Nicrophorus americanus Olivier (Coleoptera : Silphidae) and available food resources , 1997 .

[18]  G. Polis,et al.  Linking Marine and Terrestrial Food Webs: Allochthonous Input from the Ocean Supports High Secondary Productivity on Small Islands and Coastal Land Communities , 1996, The American Naturalist.

[19]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[20]  Serhiy Morozov,et al.  A Distributed, Architecture-Centric Approach to Computing Accurate Recommendations from Very Large and Sparse Datasets , 2011 .

[21]  G. Polis,et al.  TOWARD AN INTEGRATION OF LANDSCAPE AND FOOD WEB ECOLOGY : The Dynamics of Spatially Subsidized Food Webs , 2005 .

[22]  A. Ishida,et al.  Nitrogen and phosphorus enrichment and balance in forests colonized by cormorants: Implications of the influence of soil adsorption , 2004, Plant and Soil.

[23]  M. Scott The ecology and behavior of burying beetles. , 1998, Annual review of entomology.

[24]  S. Peck,et al.  The carrion beetles of Canada and Alaska : Coleoptera: Silphidae and Agyrtidae , 1985 .

[25]  S. Peck The Life History of the Japanese Carrion Beetle Ptomascopus Morio and the Origins of Parental Care in Nicrophorus (Coleoptera, Silphidae, Nicrophorini) , 1982 .

[26]  F. Raw,et al.  Life in the soil , 1966 .