Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes.

Measuring forces inside cells is particularly challenging. With the development of quantitative microscopy, fluorophores which allow the measurement of forces became highly desirable. We have previously introduced a mechanosensitive flipper probe, which responds to the change of plasma membrane tension by changing its fluorescence lifetime and thus allows tension imaging by FLIM. Herein, we describe the design, synthesis, and evaluation of flipper probes that selectively label intracellular organelles, i.e., lysosomes, mitochondria, and the endoplasmic reticulum. The probes respond uniformly to osmotic shocks applied extracellularly, thus confirming sensitivity toward changes in membrane tension. At rest, different lifetimes found for different organelles relate to known differences in membrane organization rather than membrane tension and allow colabeling in the same cells. At the organelle scale, lifetime heterogeneity provides unprecedented insights on ER tubules and sheets, and nuclear membranes. Examples on endosomal trafficking or increase of tension at mitochondrial constriction sites outline the potential of intracellularly targeted fluorescent tension probes to address essential questions that were previously beyond reach.

[1]  S. Manley,et al.  Mitochondrial membrane tension governs fission , 2019, bioRxiv.

[2]  S. Huber,et al.  Chalcogen Bonding: An Overview. , 2018, Angewandte Chemie.

[3]  M. Kuimova,et al.  Molecular rotors report on changes in live cell plasma membrane microviscosity upon interaction with beta-amyloid aggregates. , 2018, Soft matter.

[4]  Pablo Rivera‐Fuentes,et al.  A Simple Probe for Super-Resolution Imaging of the Endoplasmic Reticulum in Living Cells , 2018, Helvetica Chimica Acta.

[5]  Michael Krieg,et al.  Atomic force microscopy-based mechanobiology , 2018, Nature Reviews Physics.

[6]  B. Kornmann,et al.  Mechanical forces on cellular organelles , 2018, Journal of Cell Science.

[7]  P. Janmey,et al.  Mechanosensing at Cellular Interfaces. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[8]  S. Matile,et al.  Streptavidin interfacing as a general strategy to localize fluorescent membrane tension probes in cells , 2018, Chemical science.

[9]  André Nadler,et al.  A Click Cage: Organelle‐Specific Uncaging of Lipid Messengers , 2018, Angewandte Chemie.

[10]  E. Derivery,et al.  A Fluorescent Membrane Tension Probe , 2018, Nature Chemistry.

[11]  R. Loewith,et al.  Decrease in Plasma Membrane Tension Triggers PtdIns(4,5)P2 Phase Separation to Inactivate TORC2 , 2018, Nature Cell Biology.

[12]  Alba Diz-Muñoz,et al.  In pursuit of the mechanics that shape cell surfaces , 2018, Nature Physics.

[13]  L. Bonacina,et al.  White‐Fluorescent Dual‐Emission Mechanosensitive Membrane Probes that Function by Bending Rather than Twisting , 2018, Angewandte Chemie.

[14]  S. Kelley,et al.  A Multifunctional Chemical Probe for the Measurement of Local Micropolarity and Microviscosity in Mitochondria. , 2018, Angewandte Chemie.

[15]  Rui Guo,et al.  A novel mitochondria-targeted rhodamine analogue for the detection of viscosity changes in living cells, zebra fish and living mice. , 2018, Journal of materials chemistry. B.

[16]  S. Matile,et al.  Ganglioside‐Selective Mechanosensitive Fluorescent Membrane Probes , 2018 .

[17]  P. Bond,et al.  An Optical Technique for Mapping Microviscosity Dynamics in Cellular Organelles. , 2018, ACS nano.

[18]  S. Matile,et al.  Mechanosensitive Oligodithienothiophenes: Transmembrane Anion Transport Along Chalcogen‐Bonding Cascades , 2018 .

[19]  Kun Li,et al.  BODIPY-Based Two-Photon Fluorescent Probe for Real-Time Monitoring of Lysosomal Viscosity with Fluorescence Lifetime Imaging Microscopy. , 2018, Analytical chemistry.

[20]  I. Sazanovich,et al.  Spironaphthoxazine switchable dyes for biological imaging† †Electronic supplementary information (ESI) available: Synthetic protocols, DFT calculations, crystal structure, and additional photo-physical and microscopy characterization. CCDC 1812758. For ESI and crystallographic data in CIF or other e , 2018, Chemical science.

[21]  J. Rochaix,et al.  Specific labeling of mitochondria of Chlamydomonas with cationic helicene fluorophores. , 2018, Organic & biomolecular chemistry.

[22]  H. Noji,et al.  Mechano-Sensitive Synthetic Ion Channels. , 2017, Journal of the American Chemical Society.

[23]  F. Maxfield,et al.  Membrane order in the plasma membrane and endocytic recycling compartment , 2017, PloS one.

[24]  P. Monzo,et al.  Membrane tension: A challenging but universal physical parameter in cell biology. , 2017, Seminars in cell & developmental biology.

[25]  C. L. Teoh,et al.  Motion-induced change in emission (MICE) for developing fluorescent probes. , 2017, Chemical Society reviews.

[26]  Evan W. Miller,et al.  Voltage Imaging: Pitfalls and Potential. , 2017, Biochemistry.

[27]  Xavier Trepat,et al.  Quantifying forces in cell biology , 2017, Nature Cell Biology.

[28]  S. Matile,et al.  Correlation of surface pressure and hue of planarizable push–pull chromophores at the air/water interface , 2017, Beilstein journal of organic chemistry.

[29]  S. Mazères,et al.  Using spectral decomposition of the signals from laurdan-derived probes to evaluate the physical state of membranes in live cells , 2017, F1000Research.

[30]  Andrey S. Klymchenko,et al.  Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. , 2017, Accounts of chemical research.

[31]  E. Derivery,et al.  Headgroup engineering in mechanosensitive membrane probes. , 2016, Chemical communications.

[32]  Young‐Tae Chang,et al.  Discerning the Chemistry in Individual Organelles with Small-Molecule Fluorescent Probes. , 2016, Angewandte Chemie.

[33]  C. L. Jackson,et al.  Lipids and Their Trafficking: An Integral Part of Cellular Organization. , 2016, Developmental cell.

[34]  Jianjun Du,et al.  Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles. , 2016, Accounts of chemical research.

[35]  S. Nandi,et al.  Fluorescence Dynamics in the Endoplasmic Reticulum of a Live Cell: Time-Resolved Confocal Microscopy. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[36]  P. P. Di Fiore,et al.  Endocytic control of signaling at the plasma membrane. , 2016, Current opinion in cell biology.

[37]  M. Haidekker,et al.  Ratiometric mechanosensitive fluorescent dyes: Design and applications. , 2016, Journal of materials chemistry. C.

[38]  B. Liedberg,et al.  Mixing Water, Transducing Energy, and Shaping Membranes: Autonomously Self-Regulating Giant Vesicles. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[39]  Eric Bakker,et al.  Selective Imaging of Late Endosomes with a pH-Sensitive Diazaoxatriangulene Fluorescent Probe. , 2016, Journal of the American Chemical Society.

[40]  Y. Mély,et al.  Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes , 2016, Scientific Reports.

[41]  Antonio Bauzá,et al.  The bright future of unconventional σ/π-hole interactions. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  B. Peterson,et al.  Synthesis of Fluorophores that Target Small Molecules to the Endoplasmic Reticulum of Living Mammalian Cells. , 2015, Angewandte Chemie.

[43]  G. Barbarella,et al.  Supramolecular oligothiophene microfibers spontaneously assembled on surfaces or coassembled with proteins inside live cells. , 2015, Accounts of chemical research.

[44]  Pierre Sens,et al.  Membrane tension and cytoskeleton organization in cell motility , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[45]  T. Ozturk,et al.  Thienothiophenes, dithienothiophenes, and thienoacenes: syntheses, oligomers, polymers, and properties. , 2015, Chemical reviews.

[46]  B. Beno,et al.  A Survey of the Role of Noncovalent Sulfur Interactions in Drug Design. , 2015, Journal of medicinal chemistry.

[47]  E. Derivery,et al.  Fluorescent Flippers for Mechanosensitive Membrane Probes , 2015, Journal of the American Chemical Society.

[48]  Dong Chen,et al.  Three dimensional (temperature-tension-composition) phase map of mixed DOPC-DPPC vesicles: Two solid phases and a fluid phase coexist on three intersecting planes. , 2014, Biochimica et biophysica acta.

[49]  S. Archer Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. , 2013, The New England journal of medicine.

[50]  Jiangli Fan,et al.  Fluorene-derived two-photon fluorescent probes for specific and simultaneous bioimaging of endoplasmic reticulum and lysosomes: group-effect and localization. , 2013, Journal of materials chemistry. B.

[51]  Chulhun Kang,et al.  A self-calibrating bipartite viscosity sensor for mitochondria. , 2013, Journal of the American Chemical Society.

[52]  Alexander M van der Bliek,et al.  Mechanisms of mitochondrial fission and fusion. , 2013, Cold Spring Harbor perspectives in biology.

[53]  B. van Deurs,et al.  Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands , 2013, PloS one.

[54]  Ben Zhong Tang,et al.  A photostable AIE luminogen for specific mitochondrial imaging and tracking. , 2013, Journal of the American Chemical Society.

[55]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[56]  Tsutomu Hamada,et al.  Lateral phase separation in tense membranes , 2011 .

[57]  Y. Yeung,et al.  Aminothiocarbamate-catalyzed asymmetric bromolactonization of 1,2-disubstituted olefinic acids. , 2011, Organic letters.

[58]  H. McMahon,et al.  Mechanisms of endocytosis. , 2009, Annual review of biochemistry.

[59]  G. Meer,et al.  Membrane lipids: where they are and how they behave , 2008, Nature Reviews Molecular Cell Biology.

[60]  M. McNiven,et al.  A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. , 2006, Cancer research.

[61]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[62]  A. Jiménez-Sánchez,et al.  A Multifunctional Chemical Probe for Local Micropolarity and Microviscosity in Mitochondria , 2019 .