Characterizing the role of phosphatidylglycerol-phosphate phosphatases in Acinetobacter baumannii cell envelope biogenesis and antibiotic resistance

[1]  B. Kobe,et al.  Structural and biochemical characterization of Acinetobacter baumannii ZnuA. , 2022, Journal of inorganic biochemistry.

[2]  M. O’Mara,et al.  Dynamics of the Acinetobacter baumannii inner membrane under exogenous polyunsaturated fatty acid stress. , 2022, Biochimica et biophysica acta. Biomembranes.

[3]  I. Ebersberger,et al.  Evolutionarily stable gene clusters shed light on the common grounds of pathogenicity in the Acinetobacter calcoaceticus-baumannii complex , 2022, bioRxiv.

[4]  R. Morona,et al.  Detection of a disulphide bond and conformational changes in Shigella flexneri Wzy, and the role of cysteine residues in polymerase activity. , 2022, Biochimica et biophysica acta. Biomembranes.

[5]  Karl A. Hassan,et al.  The Impact of Omega-3 Fatty Acids on the Evolution of Acinetobacter baumannii Drug Resistance , 2021, Microbiology spectrum.

[6]  J. Kenyon,et al.  The Wzi outer membrane protein mediates assembly of a tight capsular polysaccharide layer on the Acinetobacter baumannii cell surface , 2021, Scientific Reports.

[7]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[8]  Karl A. Hassan,et al.  The Membrane Composition Defines the Spatial Organization and Function of a Major Acinetobacter baumannii Drug Efflux System , 2021, mBio.

[9]  Amy K. Cain,et al.  Acinetobacter baumannii Fatty Acid Desaturases Facilitate Survival in Distinct Environments. , 2021, ACS infectious diseases.

[10]  M. Snel,et al.  To Make or Take: Bacterial Lipid Homeostasis during Infection , 2021, bioRxiv.

[11]  Evangelos I. Kritsotakis,et al.  Excess mortality due to pandrug-resistant Acinetobacter baumannii infections in hospitalized patients. , 2020, The Journal of hospital infection.

[12]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[13]  R. Auger,et al.  Insight into the dual function of lipid phosphate phosphatase PgpB involved in two essential cell-envelope metabolic pathways in Escherichia coli , 2020, Scientific Reports.

[14]  F. Schreiber,et al.  Polymyxins Bind to the Cell Surface of Unculturable Acinetobacter baumannii and Cause Unique Dependent Resistance , 2020, Advanced science.

[15]  W. Vollmer,et al.  Regulation of peptidoglycan synthesis and remodelling , 2020, Nature Reviews Microbiology.

[16]  Michael J MacCoss,et al.  Skyline for Small Molecules: A Unifying Software Package for Quantitative Metabolomics. , 2020, Journal of proteome research.

[17]  S. Marrink,et al.  Two distinct anionic phospholipid-dependent events involved in SecA-mediated protein translocation. , 2019, Biochimica et biophysica acta. Biomembranes.

[18]  Rick L. Stevens,et al.  The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities , 2019, Nucleic Acids Res..

[19]  M. Hamidian,et al.  Emergence, molecular mechanisms and global spread of carbapenem-resistant Acinetobacter baumannii , 2019, Microbial genomics.

[20]  R. Auger,et al.  HupA, the main undecaprenyl pyrophosphate and phosphatidylglycerol phosphate phosphatase in Helicobacter pylori is essential for colonization of the stomach , 2019, PLoS pathogens.

[21]  E. Yang,et al.  The Lipid A 1-Phosphatase, LpxE, Functionally Connects Multiple Layers of Bacterial Envelope Biogenesis , 2019, mBio.

[22]  G. Dougan,et al.  Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics , 2019, Nature Genetics.

[23]  V. Cooper,et al.  Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle , 2019, eLife.

[24]  Karl A. Hassan,et al.  Identification of Novel Acinetobacter baumannii Host Fatty Acid Stress Adaptation Strategies , 2019, mBio.

[25]  Marcin Grabowicz,et al.  The bacterial outer membrane is an evolving antibiotic barrier , 2018, Proceedings of the National Academy of Sciences.

[26]  M. McConnell,et al.  Peptidoglycan recycling contributes to intrinsic resistance to fosfomycin in Acinetobacter baumannii , 2018, The Journal of antimicrobial chemotherapy.

[27]  J. Simorre,et al.  Coupling of polymerase and carrier lipid phosphatase prevents product inhibition in peptidoglycan synthesis , 2018, Cell surface.

[28]  Karl A. Hassan,et al.  Resistance to pentamidine is mediated by AdeAB, regulated by AdeRS, and influenced by growth conditions in Acinetobacter baumannii ATCC 17978 , 2018, bioRxiv.

[29]  M. Feldman,et al.  Uncovering the mechanisms of Acinetobacter baumannii virulence , 2017, Nature Reviews Microbiology.

[30]  L. Gallagher,et al.  Importance of Core Genome Functions for an Extreme Antibiotic Resistance Trait , 2017, mBio.

[31]  M. Bogdanov,et al.  Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane* , 2016, The Journal of Biological Chemistry.

[32]  C. Rock,et al.  Bacterial lipids: metabolism and membrane homeostasis. , 2013, Progress in lipid research.

[33]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[34]  Jay Shendure,et al.  Genome-Scale Identification of Resistance Functions in Pseudomonas aeruginosa Using Tn-seq , 2011, mBio.

[35]  C. Raetz,et al.  Three Phosphatidylglycerol-phosphate Phosphatases in the Inner Membrane of Escherichia coli* , 2010, The Journal of Biological Chemistry.

[36]  A. Wilkinson,et al.  Lipid spirals in Bacillus subtilis and their role in cell division , 2008, Molecular microbiology.

[37]  D. Blanot,et al.  Cytoplasmic steps of peptidoglycan biosynthesis. , 2008, FEMS microbiology reviews.

[38]  M. de Pedro,et al.  Peptidoglycan structure and architecture. , 2008, FEMS microbiology reviews.

[39]  S. Magnet,et al.  AdeIJK, a Resistance-Nodulation-Cell Division Pump Effluxing Multiple Antibiotics in Acinetobacter baumannii , 2008, Antimicrobial Agents and Chemotherapy.

[40]  D. Mengin-Lecreulx,et al.  Periplasmic phosphorylation of lipid A is linked to the synthesis of undecaprenyl phosphate , 2007, Molecular microbiology.

[41]  A. Derbise,et al.  Identification of Multiple Genes Encoding Membrane Proteins with Undecaprenyl Pyrophosphate Phosphatase (UppP) Activity in Escherichia coli* , 2005, Journal of Biological Chemistry.

[42]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[43]  T. Icho,et al.  Multiple genes for membrane-bound phosphatases in Escherichia coli and their action on phospholipid precursors , 1983, Journal of bacteriology.

[44]  O. Geiger,et al.  Bacterial membrane lipids: diversity in structures and pathways. , 2016, FEMS microbiology reviews.

[45]  J. Blanchard,et al.  Aminoglycosides: Mechanisms of Action and Resistance , 2009 .

[46]  R. Hancock,et al.  Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances , 2008, Nature Protocols.