More on Multidimensional Scaling and Unfolding in R: smacof Version 2

The smacof package offers a comprehensive implementation of multidimensional scaling (MDS) techniques in R . Since its first publication (De Leeuw and Mair 2009b) the functionality of the package has been enhanced, and several additional methods, features and utilities were added. Major updates include a complete re-implementation of multidimensional unfolding allowing for monotone dissimilarity transformations, including row-conditional, circular, and external unfolding. Additionally, the constrained MDS implementation was extended in terms of optimal scaling of the external variables. Further package additions include various tools and functions for goodness-of-fit assessment, unidimensional scaling, gravity MDS, asymmetric MDS, Procrustes, and MDS biplots. All these new package functionalities are illustrated using a variety of real-life applications.

[1]  Alan Y Chiang,et al.  Book Review: Statistical methods for rates and proportions, 3rd edition , 2005 .

[2]  Juan Manuel Contreras,et al.  Neural evidence that three dimensions organize mental state representation: Rationality, social impact, and valence , 2015, Proceedings of the National Academy of Sciences.

[3]  William G. Jacoby,et al.  Bootstrap Confidence Regions for Multidimensional Scaling Solutions , 2014 .

[4]  Sharon L. Weinberg,et al.  Confidence regions for INDSCAL using the jackknife and bootstrap techniques , 1984 .

[5]  P. Mair,et al.  SEMDS: An R Package for Structural Equation Multidimensional Scaling , 2019, Structural Equation Modeling: A Multidisciplinary Journal.

[6]  I. Borg,et al.  The Choice of Initial Configurations in Multidimensional Scaling: Local Minima, Fit, and Interpretability , 2017 .

[7]  H SCHLOSBERG,et al.  The dimensional analysis of a new series of facial expressions. , 1958, Journal of experimental psychology.

[8]  A. J. Collins,et al.  Matching configurations , 1992 .

[9]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[10]  R. Shepard Stimulus and response generalization: A stochastic model relating generalization to distance in psychological space , 1957 .

[11]  I. Borg,et al.  Dimensional models for the perception of rectangles , 1983, Perception & psychophysics.

[12]  J. Vera,et al.  A Structural Equation Multidimensional Scaling Model for One-Mode Asymmetric Dissimilarity Data , 2014 .

[13]  Regina Dittrich,et al.  prefmod: An R Package for Modeling Preferences Based on Paired Comparisons, Rankings, or Ratings , 2012 .

[14]  J. Ramsay Maximum likelihood estimation in multidimensional scaling , 1977 .

[15]  Patrick J. F. Groenen,et al.  Applied Multidimensional Scaling and Unfolding , 2018 .

[16]  W. George Similarity and Dissimilarity , 1938, Nature.

[17]  J. Gower,et al.  Metric and Euclidean properties of dissimilarity coefficients , 1986 .

[18]  P. Groenen,et al.  Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation , 2005 .

[19]  R. Abelson,et al.  Multidimensional scaling of facial expressions. , 1962, Journal of experimental psychology.

[20]  J. Leeuw Applications of Convex Analysis to Multidimensional Scaling , 2000 .

[21]  V. Rao,et al.  GENFOLD2: A set of models and algorithms for the general UnFOLDing analysis of preference/dominance data , 1984 .

[22]  F. Copleston,et al.  A History of Philosophy. Volume I: Greece and Rome , 1947 .

[23]  Jitesh J. Thakkar Linear Programming Techniques for Multidimensional Analysis of Preference (LINMAP) , 2021 .

[24]  Jan de Leeuw,et al.  Modern Multidimensional Scaling: Theory and Applications (Second Edition) , 2005 .

[25]  I Spence,et al.  A TABLE OF EXPECTED STRESS VALUES FOR RANDOM RANKINGS IN NONMETRIC MULTIDIMENSIONAL SCALING. , 1973, Multivariate behavioral research.

[26]  Kurt Hornik,et al.  Cluster Optimized Proximity Scaling , 2021, J. Comput. Graph. Stat..

[27]  George Rabinowitz,et al.  An Introduction to Nonmetric Multidimensional Scaling , 1975 .

[28]  Cecilio Mar-Molinero,et al.  Assessing the asymmetric effects on branch rivalry of Spanish financial sector restructuring , 2014, Adv. Data Anal. Classif..

[29]  Yaoda Xu,et al.  An Information-Driven 2-Pathway Characterization of Occipitotemporal and Posterior Parietal Visual Object Representations. , 2019, Cerebral cortex.

[30]  Patrick Mair,et al.  Goodness-of-Fit Assessment in Multidimensional Scaling and Unfolding , 2016, Multivariate behavioral research.

[31]  Roger N. Shepard,et al.  Multidimensional scaling : theory and applications in the behavioral sciences , 1974 .

[32]  David C. Howell,et al.  Unidimensional Scaling , 2004 .

[33]  Forrest W. Young,et al.  Successive Unfolding of Family Preferences , 1981 .

[34]  C. Coombs A theory of data. , 1965, Psychological review.

[35]  K. Haynes,et al.  Gravity and Spatial Interaction Models , 1985 .

[36]  Willem J. Heiser,et al.  Analysis of asymmetry by a slide-vector , 1993 .

[37]  E. Rothkopf A measure of stimulus similarity and errors in some paired-associate learning tasks. , 1957, Journal of experimental psychology.

[38]  Willem J. Heiser,et al.  Constrained Multidimensional Scaling, Including Confirmation , 1983 .

[39]  I. Borg,et al.  A model and algorithm for multidimensional scaling with external constraints on the distances , 1980 .

[40]  Akinori Okada,et al.  Methods for the analysis of asymmetric pairwise relationships , 2018, Adv. Data Anal. Classif..

[41]  William G. Jacoby Levels of measurement and political research: An optimistic view , 1999 .

[42]  David R. Cox,et al.  On a Discriminatory Problem Connected with the Works of Plato , 1959 .

[43]  M. Mashinchi,et al.  CLASSIFICATION BASED ON SIMILARITY AND DISSIMILARITY THROUGH EQUIVALENCE CLASSES , 2009 .

[44]  A. Gifi,et al.  NONLINEAR MULTIVARIATE ANALYSIS , 1990 .

[45]  Patrick Mair,et al.  Multidimensional Scaling Using Majorization: SMACOF in R , 2008 .

[46]  P. Mair,et al.  Modern Psychometrics with R , 2018 .

[47]  J. Berge,et al.  Tucker's congruence coefficient as a meaningful index of factor similarity. , 2006 .

[48]  R. Cattell,et al.  The Procrustes Program: Producing direct rotation to test a hypothesized factor structure. , 2007 .

[49]  J. Vera Distance stability analysis in multidimensional scaling using the jackknife method , 2017, The British journal of mathematical and statistical psychology.

[50]  S. Schwartz Universals in the Content and Structure of Values: Theoretical Advances and Empirical Tests in 20 Countries , 1992 .

[51]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[52]  Jan de Leeuw,et al.  Gifi Methods for Optimal Scaling in R: The Package homals , 2009 .

[53]  Willem J. Heiser,et al.  Multidimensional Scaling and Unfolding of Symmetric and Asymmetric Proximity Relations , 2004 .

[54]  Jan de Leeuw,et al.  A special Jackknife for Multidimensional Scaling , 1986 .

[55]  J. Fleiss,et al.  Statistical methods for rates and proportions , 1973 .

[56]  Willem J. Heiser,et al.  Models for asymmetric proximities , 1996 .

[57]  J. Ramsay Some Statistical Approaches to Multidimensional Scaling Data , 1982 .

[58]  J. Ramsay Monotone Regression Splines in Action , 1988 .

[59]  Inverse Multidimensional Scaling , 1997 .

[60]  Kurt Hornik,et al.  The grand old party – a party of values? , 2014, SpringerPlus.

[61]  T. Cox,et al.  Multidimensional scaling on a sphere , 1991 .

[62]  Ian Spence,et al.  Monte Carlo studies in nonmetric scaling , 1978 .

[63]  Ingwer Borg,et al.  Does the Value Circle Exist Within Persons or Only Across Persons? , 2017, Journal of personality.

[64]  Forrest W. Young Sociometry: Deriving Sociograms via Asymmetric Multidimensional Scaling , 2013 .