Nanomechanical Control of an Optical Antenna

In this work we present a tunable bowtie optical antenna fabricated via a colloidal nanomask. The structure consists of two gold nanotriangles on a silica substrate. The feedgap can be continuously varied by manipulating an antenna arm with nanometer precision with an atomic force microscope (AFM). At the same time the optical response of the nanoantenna is determined with darkfield scattering spectroscopy.

[1]  Gordon S. Kino,et al.  Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles , 2005 .

[2]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[3]  P. Leiderer,et al.  From Mesoscopic to Nanoscopic Surface Structures: Lithography with Colloid Monolayers , 1998 .

[4]  U. Fischer,et al.  Submicroscopic pattern replication with visible light , 1981 .

[5]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[6]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[7]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[8]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[9]  D. P. Fromm,et al.  Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas. , 2006, Nano letters.

[10]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[11]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[12]  Christophe Mihalcea,et al.  Light Delivery Techniques for Heat-Assisted Magnetic Recording , 2003 .

[13]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[14]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2 , 2003, 1002.1505.

[15]  G. Abstreiter,et al.  Nonlinear optical response of highly energetic excitons in GaAs: Microscopic electrodynamics at semiconductor interfaces , 2002 .

[16]  Federico Capasso,et al.  Plasmonic laser antenna , 2006 .

[17]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[18]  R. Glang Materials and Processes for Passive Thin-Film Components , 1966 .

[19]  G. Abstreiter,et al.  Ultrafast optical spectroscopy of large-momentum excitons in GaAs. , 2000, Physical review letters.

[20]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[21]  K. Haq,et al.  Adhesion mechanism of gold-underlayer film combinations to oxide substrates. , 1969 .