Close Encounters of the Binary Kind: Signal Reconstruction Guarantees for Compressive Hadamard Sampling With Haar Wavelet Basis

We investigate the problems of 1-D and 2-D signal recovery from subsampled Hadamard measurements using Haar wavelet as a sparsity inducing prior. These problems are of interest in, e.g., computational imaging applications relying on optical multiplexing or single-pixel imaging. However, the realization of such modalities is often hindered by the coherence between the Hadamard and Haar bases. The variable and multilevel density sampling strategies solve this issue by adjusting the subsampling process to the local and multilevel coherence, respectively, between the two bases; hence enabling successful signal recovery. In this work, we compute an explicit sample-complexity bound for Hadamard-Haar systems as well as uniform and non-uniform recovery guarantees; a seemingly missing result in the related literature. We explore the faithfulness of the numerical simulations to the theoretical results and show in a practically relevant instance, e.g., single-pixel camera, that the target signal can be recovered from a few Hadamard measurements.

[1]  Sorin Popa,et al.  Classification of subfactors: the reduction to commuting squares , 1990 .

[2]  Laurent Jacques,et al.  Coded-Illumination Fourier Transform Interferometry , 2016 .

[3]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[4]  José M. Bioucas-Dias,et al.  Compressive Hyperspectral Imaging: Fourier Transform Interferometry meets Single Pixel Camera , 2018, ArXiv.

[5]  J. Sylvester LX. Thoughts on inverse orthogonal matrices, simultaneous signsuccessions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers , 1867 .

[6]  Sanjit K. Mitra,et al.  Kronecker Products, Unitary Matrices and Signal Processing Applications , 1989, SIAM Rev..

[7]  A. Moshtaghpour,et al.  A Variable Density Sampling Scheme for Compressive Fourier Transform Interferometry , 2018, SIAM J. Imaging Sci..

[8]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[9]  Claire Boyer,et al.  On oracle-type local recovery guarantees in compressed sensing , 2018, ArXiv.

[10]  A. Robert Calderbank,et al.  Compressive imaging using fast transform coding , 2016, Security + Defence.

[11]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[12]  Volkan Cevher,et al.  Structured sampling and recovery of iEEG signals , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[13]  Ben Adcock,et al.  The quest for optimal sampling: Computationally efficient, structure-exploiting measurements for compressed sensing , 2014, ArXiv.

[14]  Ben Adcock,et al.  On asymptotic structure in compressed sensing , 2014, ArXiv.

[15]  Zhongmin Wang,et al.  Variable density compressed image sampling , 2009, 2009 17th European Signal Processing Conference.

[16]  Ronald R. Coifman,et al.  Application of spatial light modulators for new modalities in spectrometry and imaging , 2003, SPIE BiOS.

[17]  Ben Adcock,et al.  Analyzing the structure of multidimensional compressed sensing problems through coherence , 2016, ArXiv.

[18]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[19]  Michael Conner,et al.  Recursive fast algorithm and the role of the tensor product , 1992, IEEE Trans. Signal Process..

[20]  Qing Ye,et al.  Hyperspectral imaging using the single-pixel Fourier transform technique , 2017, Scientific Reports.

[21]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[22]  Paul A. Wilford,et al.  Lensless imaging by compressive sensing , 2013, 2013 IEEE International Conference on Image Processing.

[23]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[24]  Pierre Weiss,et al.  Compressed sensing with structured sparsity and structured acquisition , 2015, Applied and Computational Harmonic Analysis.

[25]  Anders Hansen,et al.  Sampling from binary measurements - on reconstructions from Walsh coefficients , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[26]  Zibang Zhang,et al.  Hadamard single-pixel imaging versus Fourier single-pixel imaging. , 2017, Optics express.

[27]  Ben Adcock,et al.  A Note on Compressed Sensing of Structured Sparse Wavelet Coefficients From Subsampled Fourier Measurements , 2014, IEEE Signal Processing Letters.

[28]  Graham M. Gibson,et al.  3D single-pixel video , 2016 .

[29]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[30]  Anru Zhang,et al.  Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices , 2013, IEEE Transactions on Information Theory.

[31]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[32]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[33]  B. Fino Relations between Haar and Walsh/Hadamard transforms , 1972 .

[34]  R. Calderbank,et al.  On Reconstructing Functions from Binary Measurements , 2019, Applied and Numerical Harmonic Analysis.

[35]  Ben Adcock,et al.  Uniform recovery in infinite-dimensional compressed sensing and applications to structured binary sampling , 2019, ArXiv.

[36]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[37]  Laurent Jacques,et al.  Compressive Hyperspectral Imaging using Coded Fourier Transform Interferometry , 2017 .

[38]  Mihail N. Kolountzakis,et al.  Complex Hadamard matrices and the spectral set conjecture , 2004 .

[39]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[40]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[41]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[42]  Amir Fijany,et al.  Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits , 1998, QCQC.

[43]  E. Tajahuerce,et al.  Single-pixel digital holography with phase-encoded illumination. , 2017, Optics express.

[44]  Yaakov Tsaig,et al.  Extensions of compressed sensing , 2006, Signal Process..

[45]  Bogdan J. Falkowski,et al.  Walsh-like functions and their relations , 1996 .

[46]  José M. Bioucas-Dias,et al.  Compressive Single-pixel Fourier Transform Imaging Using Structured Illumination , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[47]  Ben Adcock,et al.  BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.

[48]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[49]  Laura Thesing,et al.  Linear reconstructions and the analysis of the stable sampling rate , 2019, ArXiv.

[50]  Laurent Jacques,et al.  Multilevel Illumination Coding for Fourier Transform Interferometry in Fluorescence Spectroscopy , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[51]  Mohammad Umar Siddiqi,et al.  The Haar-Recursive transform and its consequence to the Walsh-paley spectrum and the autocorrelation function , 2016 .

[52]  Rainer von Sachs,et al.  Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra , 1997 .

[53]  Wai Lam Chan,et al.  A single-pixel terahertz imaging system based on compressed sensing , 2008 .

[54]  Mark R. Freeman,et al.  3D Computational Imaging with Single-Pixel Detectors , 2013 .

[55]  Dennis Goeckel,et al.  Performance Bounds for Grouped Incoherent Measurements in Compressive Sensing , 2015, IEEE Transactions on Signal Processing.

[56]  Chen Li,et al.  Compressed sensing with local structure: uniform recovery guarantees for the sparsity in levels class , 2016, Applied and Computational Harmonic Analysis.

[57]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[58]  C. Loan The ubiquitous Kronecker product , 2000 .

[59]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[60]  Laura Thesing,et al.  Non-uniform recovery guarantees for binary measurements and infinite-dimensional compressed sensing , 2019, ArXiv.

[61]  Laurent Jacques,et al.  "Single Pixel Hyperspectral Imaging using Fourier Transform Interferometry" , 2020 .

[62]  S. Agaian Hadamard Matrices and Their Applications , 1985 .

[63]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[64]  David Salesin,et al.  Wavelets for computer graphics: a primer.1 , 1995, IEEE Computer Graphics and Applications.

[65]  Pierre Weiss,et al.  An Analysis of Block Sampling Strategies in Compressed Sensing , 2013, IEEE Transactions on Information Theory.

[66]  Vicente Durán,et al.  Compressive holography with a single-pixel detector. , 2013, Optics letters.

[67]  Laurent Jacques,et al.  Compressive Hyperspectral Imaging with Fourier Transform Interferometry , 2016 .

[68]  Vegard Antun Coherence estimates between Hadamard matrices and Daubechies wavelets , 2016 .

[69]  E. Candès,et al.  Compressive fluorescence microscopy for biological and hyperspectral imaging , 2012, Proceedings of the National Academy of Sciences.

[70]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[71]  Pierre Vandergheynst,et al.  On Variable Density Compressive Sampling , 2011, IEEE Signal Processing Letters.

[72]  Rachel Ward,et al.  Stable and Robust Sampling Strategies for Compressive Imaging , 2012, IEEE Transactions on Image Processing.

[73]  B. F. Logan,et al.  The Fourier reconstruction of a head section , 1974 .

[74]  A. Hansen,et al.  On fundamentals of models and sampling in compressed sensing , 2015 .

[75]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[76]  Richard G. Baraniuk,et al.  Compressive imaging for video representation and coding , 2006 .

[77]  Anders C. Hansen,et al.  On the stable sampling rate for binary measurements and wavelet reconstruction , 2019, Applied and Computational Harmonic Analysis.

[78]  Jianwei Ma,et al.  Single-Pixel Remote Sensing , 2009, IEEE Geoscience and Remote Sensing Letters.

[79]  H. Butin On an Ordering of Walsh Functions , 1978, IEEE Transactions on Computers.

[80]  R. Calderbank,et al.  On reconstructions from measurements with binary functions , 2019 .