Composite gel-filled giant vesicles: Membrane homogeneity and mechanical properties

Abstract We further investigate the properties of composite Poly(NIPAM) (poly(N-isopropylacrylamide)) gel-filled giant vesicles, focusing here on i) the homogeneity of the membrane, ii) its coupling to the inner gel under strong suction pressures, and iii) the relation between the final elastic modulus of the vesicles and the amount of crosslinker in the pre-gel medium. We show that whereas the photo-polymerization process induces a decrease of the membrane homogeneity at the micrometer size range, the membrane still remains strongly coupled to the internal gel network. The vesicles studied here display average moduli in the range [0.5–25] kPa, confirming their potential as biomimetic mechanical systems.

[1]  R M Nerem,et al.  Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. , 1990, Journal of biomechanical engineering.

[2]  M. Faivre,et al.  Responsive Giant Vesicles Filled with Poly(N-isopropylacrylamide) Sols or Gels , 2006 .

[3]  R. Schubert,et al.  Mimicking a cytoskeleton by coupling poly(N-isopropylacrylamide) to the inner leaflet of liposomal membranes: effects of photopolymerization on vesicle shape and polymer architecture. , 2002, Biomacromolecules.

[4]  E. Evans,et al.  Water permeability and mechanical strength of polyunsaturated lipid bilayers. , 2000, Biophysical journal.

[5]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[6]  Françoise Brochard-Wyart,et al.  Nanotubes from gelly vesicles , 2008 .

[7]  Aldo Jesorka,et al.  Controlling the internal structure of giant unilamellar vesicles by means of reversible temperature dependent sol-gel transition of internalized poly(N-isopropyl acrylamide). , 2005, Langmuir : the ACS journal of surfaces and colloids.

[8]  C Rotsch,et al.  Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. , 2000, Biophysical journal.

[9]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[10]  E. Sackmann,et al.  Polymorphism of cross-linked actin networks in giant vesicles. , 2002, Physical review letters.

[11]  U G Hofmann,et al.  Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. , 1997, Journal of structural biology.

[12]  S. Ramalingam,et al.  Group combustion of a cylindrical cloud of char/carbon particles , 1988 .

[13]  M. Abkarian,et al.  Giant lipid vesicles filled with a gel: shape instability induced by osmotic shrinkage. , 2004, Biophysical journal.

[14]  A. Viallat,et al.  Responsive viscoelastic giant lipid vesicles filled with a poly(N-isopropylacrylamide) artificial cytoskeleton. , 2007, Soft matter.

[15]  C. Rotsch,et al.  AFM IMAGING AND ELASTICITY MEASUREMENTS ON LIVING RAT LIVER MACROPHAGES , 1997, Cell biology international.

[16]  H. Ringsdorf,et al.  Interactions of liposomes and hydrophobically-modified poly-(N-isopropylacrylamides): an attempt to model the cytoskeleton. , 1993, Biochimica et biophysica acta.

[17]  Marian Kaholek,et al.  UV-Induced Gelation on Nanometer Scale Using Liposome Reactor , 2002 .

[18]  Faraday Discuss , 1985 .

[19]  Thomas Boudou,et al.  An extended modeling of the micropipette aspiration experiment for the characterization of the Young's modulus and Poisson's ratio of adherent thin biological samples: numerical and experimental studies. , 2006, Journal of biomechanics.