The electronic structure and magnetic property of the Mn doped β-Ga2O3

Abstract Ga2O3 is a promising candidate for high power, high voltage devices. In this work, the band structure of the pure β-Ga2O3 and the impact of orbital coupling on the Mn doped β-Ga2O3 electronic structure are analyzed based on density functional theory. The Mn dopant induces impurity bands near the band edge, resulting in the decrease of the band gap of the Ga2O3. When the Mn dopants only substitute the octahedrally coordinated Ga atoms, the doped systems possess the most stable structure and the ferromagnetism, the Monte Carlo simulation predicts that the Curie temperature is 421 K. The room temperature ferromagnetism can be ascribed to the strong p-d coupling and the delocalization of O-2p orbital. The oxygen vacancy and gallium vacancy can induce the deep donor level and acceptor level into the band gap, respectively. Due to the valence change of Mn dopant, the Mn dopant undergoes a transition from donor to acceptor when the substrate obtains more carriers. Our results not only explain the observed electronic and magnetic properties in experiment, but also provide a theoretical model for designing high performance Ga2O3 based devices.

[1]  Yong Jiang,et al.  High-Temperature Ferromagnetism of Hybrid Nanostructure Ag−Zn0.92Co0.08O Dilute Magnetic Semiconductor , 2009 .

[2]  Xutang Tao,et al.  Electronic structure and optical property of metal-doped Ga2O3: a first principles study , 2016 .

[3]  Y. Hao,et al.  Investigation of temperature dependent electrical characteristics on Au/Ni/β-Ga 2 O 3 Schottky diodes , 2018, Superlattices and Microstructures.

[4]  Yu-heng Zhang,et al.  Enhanced Stability of the Magnetic Skyrmion Lattice Phase under a Tilted Magnetic Field in a Two-Dimensional Chiral Magnet. , 2017, Nano letters.

[5]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[6]  Joel B. Varley,et al.  Oxygen vacancies and donor impurities in β-Ga2O3 , 2010 .

[7]  D. Gogova,et al.  Analogy for the maximum obtainable colouration between electrochromic, gasochromic, and electrocolouration in DC-sputtered thin WO3−y films , 2005 .

[8]  Lili Hu,et al.  Broadband near-IR emission and temperature dependence in Er/Tm co-doped Bi2O3–SiO2–Ga2O3 glasses , 2012 .

[9]  M. Flatté,et al.  Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions , 2006, Nature.

[10]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[11]  Roberto Orlando,et al.  First-principles study of the structural, electronic, and optical properties of Ga 2 O 3 in its monoclinic and hexagonal phases , 2006 .

[12]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[13]  Congwei Xie,et al.  First-principles prediction of ferromagnetism in transition-metal doped monolayer AlN , 2018, Superlattices and Microstructures.

[14]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[15]  H. Xiang,et al.  Origin of the structural and magnetic anomalies of the layered compound SrFeO2: a density functional investigation. , 2008, Physical review letters.

[16]  Kazunori Sato,et al.  Theoretical Prediction of Curie Temperature in (Zn,Cr)S, (Zn,Cr)Se and (Zn,Cr)Te by First Principles Calculations , 2004 .

[17]  Takashi Taniguchi,et al.  Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. , 2014, ACS nano.

[18]  Weihua Tang,et al.  Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors , 2014 .

[19]  H. Akai Ferromagnetism and Its Stability in the Diluted Magnetic Semiconductor (In, Mn)As , 1998 .

[20]  Weihua Tang,et al.  Unipolar resistive switching behavior of amorphous gallium oxide thin films for nonvolatile memory applications , 2015 .

[21]  J. Y. Zhang,et al.  Individual β-Ga2O3 nanowires as solar-blind photodetectors , 2006 .

[22]  Lei Liu,et al.  Ferromagnetism in GaN:Gd: a density functional theory study. , 2008, Physical review letters.

[23]  Jianhua Hao,et al.  Deep ultraviolet photoconductive and near-infrared luminescence properties of Er3+-doped β-Ga2O3 thin films , 2016 .

[24]  E. Bellotti,et al.  Migration mechanisms and diffusion barriers of vacancies in Ga 2 O 3 , 2017 .

[25]  M. Moravvej-Farshi,et al.  Dual function armchair graphene nanoribbon-based spin-photodetector: Optical spin-valve and light helicity detector , 2014 .

[26]  K. Yamaguchi First principles study on electronic structure of β-Ga2O3 , 2004 .

[27]  S. Wei,et al.  Self-doping of cadmium stannate in the inverse spinel structure , 2002 .

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  M. S. Reddy,et al.  Effect of Eu3+ on the morphology, structural, optical, magnetic, and photocatalytic properties of ZnO nanoparticles , 2018, Superlattices and Microstructures.

[30]  Scott T. Dunham,et al.  Incorporation, valence state, and electronic structure of Mn and Cr in bulk single crystal β–Ga2O3 , 2012 .

[31]  Weihua Tang,et al.  Inhibition of unintentional extra carriers by Mn valence change for high insulating devices , 2016, Scientific Reports.

[32]  Daniela Gogova,et al.  Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE , 2015 .

[33]  Nathan Youngblood,et al.  Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides. , 2014, Nano letters.

[34]  D. Boukhvalov,et al.  Atomic structure, electronic states, and optical properties of epitaxially grown β-Ga2O3 layers , 2018, Superlattices and Microstructures.

[35]  Wei Li,et al.  Modulation of magnetic properties of bilayer SnSe with transition-metals doping in the interlayer , 2016 .

[36]  C. Tablero Optoelectronic Application of the 3C-Silicon Carbide with Substitutional VIII-Group Atoms , 2013 .

[37]  P. Shankar,et al.  Spintronic based superlattice structure modelling for photovoltaic application , 2014 .

[38]  Jingbo Li,et al.  Origin and enhancement of hole-induced ferromagnetism in first-row d0 semiconductors. , 2009, Physical review letters.

[39]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[40]  J. Kuo,et al.  First-principles study on ferromagnetism in nitrogen-doped In2O3 , 2009 .

[41]  Hailong Hu,et al.  Tailoring Optical Properties of Silicon Nanowires by Au Nanostructure Decorations: Enhanced Raman Scattering and Photodetection , 2012 .

[42]  Z. Sha,et al.  Mechanism of ferromagnetism in nitrogen-doped ZnO: First-principle calculations , 2008 .

[43]  Yinghui Yu,et al.  Fe on Sb(111): Potential Two-Dimensional Ferromagnetic Superstructures. , 2017, ACS nano.

[44]  Alois Lugstein,et al.  Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. , 2011, Nanoscale.

[45]  Suhuai Wei,et al.  Overcoming the doping bottleneck in semiconductors , 2004 .

[46]  E. Fortunato,et al.  Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances , 2012, Advanced materials.

[47]  Weihua Tang,et al.  Room temperature ferromagnetism in (Ga1−xMnx)2O3 epitaxial thin films , 2015 .

[48]  Manfred Martin,et al.  Ab initio calculations on the defect structure of β-Ga 2 O 3 , 2013 .

[49]  T. Herng,et al.  Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films , 2014 .

[50]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[51]  N. B. Smirnov,et al.  Compensation and persistent photocapacitance in homoepitaxial Sn-doped β-Ga2O3 , 2018 .

[52]  Aaryashree,et al.  Synergetic Accrual of Lamellar Nanohybrids for Band-Selective Photodetection , 2017 .

[53]  Kang L. Wang,et al.  Free-standing and single-crystalline Fe(1-x)Mn(x)Si nanowires with room-temperature ferromagnetism and excellent magnetic response. , 2012, ACS nano.

[54]  K. Ellmer Past achievements and future challenges in the development of optically transparent electrodes , 2012, Nature Photonics.

[55]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[56]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .