Systemic activation of tumoricidal properties in mouse macrophages and inhibition of melanoma metastases by the oral administration of MTP-PE, a lipophilic muramyl dipeptide.

The purpose of these studies was to determine whether the oral administration of a lipophilic analog of muramyl dipeptide, MTP-PE, can produce in situ activation of tumoricidal properties in mouse macrophages. MTP-PE was dissolved in a phosphate-buffered saline to produce micelles. Single or multiple oral administrations of MTP-PE produced tumoricidal activation in both lung and peritoneal macrophages. This was in direct contrast to the i.v. or i.p. administrations of MTP-PE incorporated in liposomes, which produced activation in only lung or only peritoneal macrophages, respectively. The distribution and fate of [3H]-labeled MTP-PE subsequent to oral administration revealed that MTP-PE was found in various organs independent of reticuloendothelial activity. Finally, the repeated twice-weekly oral administrations of MTP-PE inhibited lung and lymph node metastasis in C57BL/6 mice by syngeneic B16 melanoma cells. The oral administration of MTP-PE, however, was not effective in eradicating well-established melanoma metastases. We conclude that the oral administration of a lipophilic muramyl dipeptide produces systemic activation of macrophages. The feasibility of enhancing host defense against infections and cancer by the oral administration of an immunomodulator has obvious clinical advantages.