Nanomechanics combined with HDX reveals allosteric drug binding sites of CFTR NBD1

[1]  D. McAuley,et al.  Airway Inflammation and Host Responses in the Era of CFTR Modulators , 2020, International journal of molecular sciences.

[2]  G. Lukács,et al.  Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination , 2020, JCI insight.

[3]  W. Skach,et al.  CFTR trafficking mutations disrupt cotranslational protein folding by targeting biosynthetic intermediates , 2020, Nature Communications.

[4]  C. Teneback,et al.  Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial , 2019, The Lancet.

[5]  B. Shoichet,et al.  Structural identification of a hotspot on CFTR for potentiation , 2019, Science.

[6]  Weiliang Zhu,et al.  Nonnative contact effects in protein folding. , 2019, Physical chemistry chemical physics : PCCP.

[7]  B. Casserly,et al.  Longitudinal Trends in Real‐World Outcomes after Initiation of Ivacaftor. A Cohort Study from the Cystic Fibrosis Registry of Ireland , 2019, Annals of the American Thoracic Society.

[8]  D. Gadsby,et al.  STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. , 2019, Physiological reviews.

[9]  G. Lukács,et al.  Differential Scanning Fluorimetry and Hydrogen Deuterium Exchange Mass Spectrometry to Monitor the Conformational Dynamics of NBD1 in Cystic Fibrosis. , 2018, Methods in molecular biology.

[10]  F. van Goor,et al.  VX‐445–Tezacaftor–Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles , 2018, The New England journal of medicine.

[11]  A. Orth,et al.  Structure-guided combination therapy to potently improve the function of mutant CFTRs , 2018, Nature Medicine.

[12]  Frauke Gräter,et al.  CONAN: A Tool to Decode Dynamical Information from Molecular Interaction Maps , 2018, Biophysical journal.

[13]  J. Riordan,et al.  Cryo-EM visualization of an active high open probability CFTR ion channel , 2018, bioRxiv.

[14]  C. Chipot,et al.  α-Helix Unwinding as Force Buffer in Spectrins. , 2018, ACS nano.

[15]  S. Plotkin,et al.  The unfolding mechanism of monomeric mutant SOD1 by simulated force spectroscopy. , 2017, Biochimica et biophysica acta. Proteins and proteomics.

[16]  J. Forman-Kay,et al.  Direct Binding of the Corrector VX-809 to Human CFTR NBD1: Evidence of an Allosteric Coupling between the Binding Site and the NBD1:CL4 Interface , 2017, Molecular Pharmacology.

[17]  Jue Chen,et al.  Conformational Changes of CFTR upon Phosphorylation and ATP Binding , 2017, Cell.

[18]  D. Clarke,et al.  Corrector VX‐809 promotes interactions between cytoplasmic loop one and the first nucleotide‐binding domain of CFTR , 2017, Biochemical pharmacology.

[19]  D. Gadsby,et al.  Molecular Structure of the Human CFTR Ion Channel , 2017, Cell.

[20]  M. Saraiva,et al.  Force spectroscopy reveals the presence of structurally modified dimers in transthyretin amyloid annular oligomers , 2017, Journal of molecular recognition : JMR.

[21]  Jue Chen,et al.  Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator , 2016, Cell.

[22]  Steven S. Plotkin,et al.  As Simple As Possible, but Not Simpler: Exploring the Fidelity of Coarse-Grained Protein Models for Simulated Force Spectroscopy , 2016, PLoS Comput. Biol..

[23]  M. Gray,et al.  Role of CFTR in epithelial physiology , 2016, Cellular and Molecular Life Sciences.

[24]  Paweł M. Stasik Euclidean proximity function in image processing , 2016, 2016 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA).

[25]  Ryan L. Hayes,et al.  SMOG 2: A Versatile Software Package for Generating Structure-Based Models , 2016, PLoS Comput. Biol..

[26]  Garry R. Cutting,et al.  From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations , 2016, Molecular biology of the cell.

[27]  S. Matalon,et al.  A synonymous codon change alters the drug sensitivity of ΔF508 cystic fibrosis transmembrane conductance regulator , 2016, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[28]  Soo-Jung Kim,et al.  Translational tuning optimizes nascent protein folding in cells , 2015, Science.

[29]  Dima Kozakov,et al.  The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins , 2015, Nature Protocols.

[30]  J. Riordan,et al.  Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly. , 2015, Journal of Molecular Biology.

[31]  Thomas J Lane,et al.  MDTraj: a modern, open library for the analysis of molecular dynamics trajectories , 2014, bioRxiv.

[32]  Gerhard Hummer,et al.  Native contacts determine protein folding mechanisms in atomistic simulations , 2013, Proceedings of the National Academy of Sciences.

[33]  Hong Yu Ren,et al.  VX-809 corrects folding defects in cystic fibrosis transmembrane conductance regulator protein through action on membrane-spanning domain 1 , 2013, Molecular biology of the cell.

[34]  Sri Rama Koti Ainavarapu,et al.  Single-molecule studies on PolySUMO proteins reveal their mechanical flexibility. , 2013, Biophysical journal.

[35]  G. Lukács,et al.  Mechanism-based corrector combination restores ΔF508-CFTR folding and function , 2013, Nature Chemical Biology.

[36]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[37]  Soo-Jung Kim,et al.  Mechanisms of CFTR Folding at the Endoplasmic Reticulum , 2012, Front. Pharmacol..

[38]  Alexander D. MacKerell,et al.  Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. , 2012, Journal of chemical theory and computation.

[39]  H. Senderowitz,et al.  Conformational Changes Relevant to Channel Activity and Folding within the first Nucleotide Binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator* , 2012, The Journal of Biological Chemistry.

[40]  K. Du,et al.  Correction of Both NBD1 Energetics and Domain Interface Is Required to Restore ΔF508 CFTR Folding and Function , 2012, Cell.

[41]  K. Kirk,et al.  Thermally Unstable Gating of the Most Common Cystic Fibrosis Mutant Channel (ΔF508) , 2011, The Journal of Biological Chemistry.

[42]  J. Clancy,et al.  Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation , 2011, Thorax.

[43]  Elizabeth J. Denning,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[44]  W. Skach,et al.  Ligand-driven vectorial folding of ribosome-bound human CFTR NBD1. , 2011, Molecular cell.

[45]  Zhengrong Yang,et al.  Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosis , 2010, Protein science : a publication of the Protein Society.

[46]  Zhengrong Yang,et al.  Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide‐binding domain 1 , 2010, Protein science : a publication of the Protein Society.

[47]  Pradeep Kota,et al.  Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR. , 2010, Journal of molecular biology.

[48]  J. Kappes,et al.  A Synonymous Single Nucleotide Polymorphism in ΔF508 CFTR Alters the Secondary Structure of the mRNA and the Expression of the Mutant Protein* , 2010, The Journal of Biological Chemistry.

[49]  A. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[50]  Kai Du,et al.  Cooperative assembly and misfolding of CFTR domains in vivo. , 2009, Molecular biology of the cell.

[51]  Adrian W. R. Serohijos,et al.  Phenylalanine-508 mediates a cytoplasmic–membrane domain contact in the CFTR 3D structure crucial to assembly and channel function , 2008, Proceedings of the National Academy of Sciences.

[52]  Nikolay V. Dokholyan,et al.  Diminished Self-Chaperoning Activity of the ΔF508 Mutant of CFTR Results in Protein Misfolding , 2008, PLoS Comput. Biol..

[53]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[54]  Richard Lavery,et al.  Theory and simulation , 2007 .

[55]  J. Riordan,et al.  The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating , 2006, The Journal of physiology.

[56]  M Michael Gromiha,et al.  Inter-residue interactions in protein folding and stability. , 2004, Progress in biophysics and molecular biology.

[57]  Cecilia Clementi,et al.  The effects of nonnative interactions on protein folding rates: Theory and simulation , 2004, Protein science : a publication of the Protein Society.

[58]  H. Berendsen,et al.  Improving efficiency of large time‐scale molecular dynamics simulations of hydrogen‐rich systems , 1999, J. Comput. Chem..

[59]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[60]  E. Strickland,et al.  Localization and Suppression of a Kinetic Defect in Cystic Fibrosis Transmembrane Conductance Regulator Folding* , 1997, The Journal of Biological Chemistry.

[61]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[62]  P. Thomas,et al.  Alteration of the Cystic Fibrosis Transmembrane Conductance Regulator Folding Pathway , 1996, The Journal of Biological Chemistry.

[63]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[64]  E. Siggia,et al.  Entropic elasticity of lambda-phage DNA. , 1994, Science.

[65]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[66]  L. Tsui,et al.  Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. , 1989, Science.

[67]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[68]  J. Clancy,et al.  Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis. , 2013, Drugs of Today.

[69]  Kai Du,et al.  The ΔF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR , 2005, Nature Structural &Molecular Biology.

[70]  Chad A Brautigam,et al.  Side chain and backbone contributions of Phe508 to CFTR folding , 2005, Nature Structural &Molecular Biology.

[71]  A. Sali,et al.  Modeller: generation and refinement of homology-based protein structure models. , 2003, Methods in enzymology.

[72]  J. Riordan Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA , 1989 .