Two classes of permutation trinomials with Niho exponents over finite fields with even characteristic

Abstract In this paper, we consider two classes of permutation trinomials with Niho-type exponents over the finite field F 2 2 m . Some sufficient conditions are obtained to characterize the coefficients of the permutation trinomials. Our numerical result suggests that those sufficient conditions for one class are also necessary.

[1]  Xiang-dong Hou,et al.  Permutation polynomials over finite fields - A survey of recent advances , 2015, Finite Fields Their Appl..

[2]  Long Yu,et al.  Two types of permutation polynomials with special forms , 2018, Finite Fields Their Appl..

[3]  Cunsheng Ding,et al.  Permutation polynomials of the form cx+Trql/q(xa)$cx+\text {Tr}_{q^{l}/ q}(x^{a})$ and permutation trinomials over finite fields with even characteristic , 2014, Cryptography and Communications.

[4]  Xiang-dong Hou,et al.  On a class of permutation trinomials in characteristic 2 , 2018, Cryptography and Communications.

[5]  Yanping Wang,et al.  Six New Classes of Permutation Trinomials over 픽2n , 2018, SIAM J. Discret. Math..

[6]  Xiangyong Zeng,et al.  A survey on the applications of Niho exponents , 2018, Cryptography and Communications.

[7]  Xi Chen,et al.  New classes of permutation binomials and permutation trinomials over finite fields , 2015, Finite Fields Their Appl..

[8]  Qiang Wang,et al.  Cyclotomic Mapping Permutation Polynomials over Finite Fields , 2007, SSC.

[9]  Xiangyong Zeng,et al.  Two classes of permutation trinomials with Niho exponents , 2018, Finite Fields Their Appl..

[10]  Baofeng Wu,et al.  A general construction of permutation polynomials of the form (x2m+x+δ)i(2m-1)+1+x over F22m , 2017, ArXiv.

[11]  Daniele Bartoli,et al.  Permutation polynomials of the type g(xs) over 𝔽q2n , 2018, Des. Codes Cryptogr..

[12]  Daniele Bartoli,et al.  On a conjecture about a class of permutation trinomials , 2017, Finite Fields Their Appl..

[13]  R. K. Sharma,et al.  Some new classes of permutation trinomials over finite fields with even characteristic , 2016, Finite Fields Their Appl..

[14]  Michael E. Zieve On some permutation polynomials over Fq of the form x^r h(x^{(q-1)/d}) , 2007, 0707.1110.

[15]  Lei Hu,et al.  Further results on permutation trinomials over finite fields with even characteristic , 2017, Finite Fields Their Appl..

[16]  June-Bok Lee,et al.  Permutation polynomials and group permutation polynomials , 2001, Bulletin of the Australian Mathematical Society.

[17]  Xiang-dong Hou On the Tu-Zeng permutation trinomial of type (1∕4, 3∕4) , 2019, Discret. Math..

[18]  Xiang-dong Hou Determination of a type of permutation trinomials over finite fields , 2013 .

[19]  Xiang-dong Hou,et al.  Determination of a type of permutation trinomials over finite fields, II , 2013, Finite Fields Their Appl..

[20]  Kangquan Li,et al.  New constructions of permutation polynomials of the form xr h(x q - 1) over 𝔽q2 , 2017, Des. Codes Cryptogr..

[21]  Gregor Leander,et al.  Monomial bent functions , 2006, IEEE Transactions on Information Theory.

[22]  Xi Chen,et al.  Permutation polynomials of the form cx+Trql/q(xa)$cx+\text {Tr}_{q^{l}/ q}(x^{a})$ and permutation trinomials over finite fields with even characteristic , 2017, Cryptography and Communications.

[23]  R. K. Sharma,et al.  Further results on permutation polynomials of the form (xpm-x+δ)s+x over Fp2m , 2018, Finite Fields Their Appl..

[24]  Dingyi Pei,et al.  Large classes of permutation polynomials over $$\mathbb {F}_{q^2}$$Fq2 , 2015, Des. Codes Cryptogr..

[25]  Tor Helleseth,et al.  Several classes of permutation trinomials from Niho exponents , 2016, Cryptography and Communications.

[26]  Qiang Wang,et al.  On constructing permutations of finite fields , 2011, Finite Fields Their Appl..

[27]  Rudolf Lidl,et al.  Permutation polynomials of the formxrf(xq−1)/d) and their group structure , 1991 .

[28]  Tor Helleseth,et al.  A class of new permutation trinomials , 2018, Finite Fields Their Appl..

[29]  Yongqiang Li,et al.  On EA-equivalence of certain permutations to power mappings , 2011, Des. Codes Cryptogr..

[30]  Tor Helleseth,et al.  New permutation trinomials from Niho exponents over finite fields with even characteristic , 2018, Cryptography and Communications.