A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC-TOF/MS: time dependent changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity.

The effects of the administration of a single dose of the model nephrotoxin mercuric chloride (2.0 mg kg(-1), subcutaneous) to male Wistar-derived rats on the urinary metabolite profiles of a range of endogenous metabolites has been investigated using (1)H NMR and HPLC-MS. Urine samples were collected daily for 9 days from both dosed and control animals. Analysis of these samples revealed marked changes in the pattern of endogenous metabolites as a result of HgCl(2) toxicity. Peak disturbances in the urinary metabolite profiles were observed (using both NMR and HPLC-MS) at 3 days post dose. Thereafter the urinary metabolite profile gradually returned to a more normal composition. Markers of toxicity identified by (1)H NMR spectroscopy were raised concentrations of lactate, alanine, acetate, succinate, trimethylamine (TMA), and glucose. Reductions in the urinary excretion of citrate and alpha-ketoglutarate were also seen. Markers identified by HPLC-MS, in positive ion mode, were kynurenic acid, xanthurenic acid, pantothenic acid and 7-methylguanine which decreased after dosing. In addition an ion at m/z 188, probably 3-amino-2-naphthoic acid, was observed to increase after dosing. As well as these identified compounds other ions at m/z 297 and 267 decreased after dosing. In negative ion mode a range of sulfated compounds were observed, including phenol sulfate and benzene diol sulfate, which decreased after dosing. As well as the sulfated components an unidentified glucuronide at m/z 326 was also observed to decrease after dosing. The results of this study demonstrate the complementary nature of the NMR and MS-based techniques for metabonomic analysis.

[1]  E Holmes,et al.  Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins. , 1998, Chemical research in toxicology.

[2]  P J Sadler,et al.  Quantitative high resolution 1H NMR urinalysis studies on the biochemical effects of cadmium in the rat. , 1989, Molecular pharmacology.

[3]  Robert S Plumb,et al.  Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. , 2002, Rapid communications in mass spectrometry : RCM.

[4]  I. Wilson,et al.  Nuclear magnetic resonance and high-performance liquid chromatography-nuclear magnetic resonance studies on the toxicity and metabolism of ifosfamide. , 1996, Therapeutic drug monitoring.

[5]  Christophe Junot,et al.  Metabolite profiling in rat urine by liquid chromatography/electrospray ion trap mass spectrometry. Application to the study of heavy metal toxicity. , 2003, Rapid communications in mass spectrometry : RCM.

[6]  I. Wilson,et al.  Effect of diet on the urinary excretion of hippuric acid and other dietary-derived aromatics in rat. A complex interaction between diet, gut microflora and substrate specificity. , 1998, Xenobiotica; the fate of foreign compounds in biological systems.

[7]  R. Williams,et al.  Effect of intestinal microflora on the urinary metabolic profile of rats: a 1 H-nuclear magnetic resonance spectroscopy study , 2002, Xenobiotica; the fate of foreign compounds in biological systems.

[8]  J C Lindon,et al.  Pattern recognition classification of the site of nephrotoxicity based on metabolic data derived from proton nuclear magnetic resonance spectra of urine. , 1994, Molecular pharmacology.

[9]  E Holmes,et al.  Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra. , 2002, The Analyst.

[10]  J. Nicholson,et al.  Investigations into the biochemical effects of region-specific nephrotoxins. , 1989, Molecular pharmacology.

[11]  M. Reily,et al.  Metabonomics: evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. , 2000, Toxicological sciences : an official journal of the Society of Toxicology.

[12]  O. Fiehn,et al.  Metabolite profiling for plant functional genomics , 2000, Nature Biotechnology.

[13]  Ina Schuppe-Koistinen,et al.  Screening of biomarkers in rat urine using LC/electrospray ionization-MS and two-way data analysis. , 2003, Analytical chemistry.