A Review of Ontology‐Based Tag Recommendation Approaches

Tag recommender schemes suggest related tags for an untagged resource and better tag suggestions to tagged resources. Tagging is very important if the user identifies the tag that is more precise to use in searching interesting blogs. There is no clear information regarding the meaning of each tag in a tagging process. An user can use various tags for the same content, and he can also use new tags for an item in a blog. When the user selects tags, the resultant metadata may comprise homonyms and synonyms. This may cause an improper relationship among items and ineffective searches for topic information. The collaborative tag recommendation allows a set of freely selected text keywords as tags assigned by users. These tags are imprecise, irrelevant, and misleading because there is no control over the tag assignment. It does not follow any formal guidelines to assist tag generation, and tags are assigned to resources based on the knowledge of the users. This causes misspelled tags, multiple tags with the same meaning, bad word encoding, and personalized words without common meaning. This problem leads to miscategorization of items, irrelevant search results, wrong prediction, and their recommendations. Tag relevancy can be judged only by a specific user. These aspects could provide new challenges and opportunities to its tag recommendation problem. This paper reviews the challenges to meet the tag recommendation problem. A brief comparison between existing works is presented, which we can identify and point out the novel research directions. The overall performance of our ontology‐based recommender systems is favorably compared to other systems in the literature.

[1]  Andy Hon Wai Chun,et al.  Automatic tag recommendation for the web 2.0 blogosphere using collaborative tagging and hybrid ANN semantic structures , 2007 .

[2]  Antonina Dattolo,et al.  Recommending New Tags Using Domain-Ontologies , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[3]  Yang Song,et al.  Real-time automatic tag recommendation , 2008, SIGIR '08.

[4]  Ye Wang,et al.  Large-scale music tag recommendation with explicit multiple attributes , 2010, ACM Multimedia.

[5]  Bernardo A. Huberman,et al.  The Structure of Collaborative Tagging Systems , 2005, ArXiv.

[6]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[7]  Ronald R. Yager,et al.  Tag-based fuzzy sets for criteria evaluation in on-line selection processes , 2011, J. Ambient Intell. Humaniz. Comput..

[8]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[9]  Christie I. Ezeife,et al.  Ontology-based Web Recommendation from tags , 2011, 2011 IEEE 27th International Conference on Data Engineering Workshops.

[10]  Eva Blomqvist OntoCase-Automatic Ontology Enrichment Based on Ontology Design Patterns , 2009, International Semantic Web Conference.

[11]  Dunja Mladenic,et al.  Semi-automatic Construction of Topic Ontologies , 2005, EWMF/KDO.

[12]  Andreas Hotho,et al.  Tag Recommendations in Folksonomies , 2007, LWA.

[13]  Bamshad Mobasher,et al.  Adapting K-Nearest Neighbor for Tag Recommendation in Folksonomies , 2009, ITWP.

[14]  S. Chenthur Pandian,et al.  An Improved Approach for Topic Ontology Based Categorization of Blogs Using Support Vector Machine , 2012 .

[15]  Jemal H. Abawajy,et al.  An efficient approach based on trust and reputation for secured selection of grid resources , 2012, Int. J. Parallel Emergent Distributed Syst..

[16]  S. Chenthur Pandian,et al.  Effective Tag Recommendation System Based on Topic Ontology Using Wikipedia and WordNet , 2012, Int. J. Intell. Syst..

[17]  Maryam Mahmoudi,et al.  Query Expansion Using Persian Ontology Derived from Wikipedia , 2009 .

[18]  Ralf Krestel,et al.  Tag Recommendation Using Probabilistic Topic Models , 2009, DC@PKDD/ECML.

[19]  Evangelos E. Milios,et al.  Learning in efficient tag recommendation , 2010, RecSys '10.

[20]  Thomas DuBois Improving Recommendation Accuracy by Clustering Social Networks with Trust , 2009 .

[21]  M. Lipczak,et al.  Tag Recommendation for Folksonomies Oriented towards Individual Users , 2008 .

[22]  Wolfgang Nejdl,et al.  Extracting Semantics Relationships between Wikipedia Categories , 2006, SemWiki.

[23]  Andreas Hotho,et al.  A Comparison of Content-Based Tag Recommendations in Folksonomy Systems , 2007, KONT/KPP.

[24]  Xin Li,et al.  Tag-based social interest discovery , 2008, WWW.

[25]  Ingmar Weber,et al.  Personalized, interactive tag recommendation for flickr , 2008, RecSys '08.

[26]  Young Park,et al.  Blogging for Informal Learning: Analyzing Bloggers' Perceptions Using Learning Perspective , 2011, J. Educ. Technol. Soc..

[27]  Maosong Sun,et al.  Tag-LDA for Scalable Real-time Tag Recommendation , 2009 .

[28]  Hui Wan,et al.  Personalized Tag Recommendations via Tagging and Content-based Similarity Metrics , 2007, ICWSM.

[29]  L. Sauermann,et al.  ConTag : A Semantic Tag Recommendation System , 2007 .

[30]  Yang Song,et al.  Automatic tag recommendation algorithms for social recommender systems , 2011, ACM Trans. Web.

[31]  H. Ueno,et al.  Recommending in Context : A Spreading Activation Model that is Independent of the Type of Recommender System and Its Contents , 2006 .

[32]  Jane Yung-jen Hsu,et al.  A Content-Based Method to Enhance Tag Recommendation , 2009, IJCAI.

[33]  Olatz Ansa,et al.  Enriching WordNet concepts with topic signatures , 2001, ArXiv.

[34]  Robert Wetzker,et al.  A hybrid approach to item recommendation in folksonomies , 2009, ESAIR '09.

[35]  Anísio Lacerda,et al.  Demand-Driven Tag Recommendation , 2010, ECML/PKDD.

[36]  Panos Alexopoulos,et al.  Exploiting ontological relations for automatic semantic tag recommendation , 2011, I-Semantics '11.

[37]  Yu Miyoshi,et al.  Innovation Detection Based on User-Interest Ontology of Blog Community , 2006, SEMWEB.

[38]  John Riedl,et al.  Tagommenders: connecting users to items through tags , 2009, WWW '09.

[39]  Antonina Dattolo,et al.  Automatic keyphrase extraction and ontology mining for content‐based tag recommendation , 2010, Int. J. Intell. Syst..