Equalization scheme analysis for high-density spin transfer torque random access memory

As the memory density increases for the big-data processing, the sensing speed is degraded because of the increased parasitic capacitive load. Thus, the equalization (EQ) scheme that is capable of improving the sensing speed has now become essential. This paper examines the effectiveness of EQ scheme on the sensing speed of offset-canceling dual-stage sensing circuit (OCDS-SC) in terms of cells per bit line (CpBL). The simulation results show that the OCDS-SC with EQ scheme achieves 3 times faster sensing time than that without EQ scheme in case of CpBL of 128. Additionally, the EQ scheme becomes more effective for reducing the sensing time according to the increase in the number of CpBL.

[1]  Seung H. Kang,et al.  A 45nm 1Mb embedded STT-MRAM with design techniques to minimize read-disturbance , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[2]  Chankyung Kim,et al.  7.4 A covalent-bonded cross-coupled current-mode sense amplifier for STT-MRAM with 1T1MTJ common source-line structure array , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[3]  Seong-Ook Jung,et al.  Reference-circuit analysis for high-bandwidth spin transfer torque random access memory , 2015, 2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).

[4]  Seong-Ook Jung,et al.  A Double-Sensing-Margin Offset-Canceling Dual-Stage Sensing Circuit for Resistive Nonvolatile Memory , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Seong-Ook Jung,et al.  Numerical Estimation of Yield in Sub-100-nm SRAM Design Using Monte Carlo Simulation , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.