Generalized correlations in terms of polarizability for van der Waals interaction potential parameter calculations

General correlations between van der Waals interaction potential parameters and polarizabilities of the interacting neutral–neutral partners of any nature are presented and discussed. To ensure the full applicability of the correlations, an evaluation of the long‐range interaction constants is performed in terms of the Slater–Kirkwood approximation whose numerical coefficients, having the meaning of effective electron numbers, are estimated interpolating the values deduced by theoretical considerations. The values of the long‐range constants so obtained are compared satisfactorily with the available experimental ones. The correlations are tested successfully over practically all systems characterized experimentally. Their use to predict the parameters of unknown systems is suggested.

[1]  W. Breckenridge,et al.  Spectroscopic characterization of the lowest singlet states of CdNe, CdAr, and CdKr , 1989 .

[2]  R. Bernstein,et al.  Total Collision Cross Sections for the Interaction of Molecular Beams of Cesium Chloride with Gases. Influence of the Dipole‐Dipole Force upon the Scattering , 1960 .

[3]  M. Keil,et al.  Interatomic potentials for HeAr, HeKr, and HeXe from multiproperty fits , 1988 .

[4]  M. Hiza,et al.  Comment on ’’Intermolecular forces in mixtures of helium with the heavier noble gases’’ , 1978 .

[5]  W. Breckenridge,et al.  Half‐collision dynamics: Exclusive production of Cd(5s5p 3P2) from the predissociation of Cd(5s5p 1P1)⋅Xe electronic states , 1989 .

[6]  U. Valbusa,et al.  H-Ar potential from high-resolution differential cross-section measurements at thermal energy , 1976 .

[7]  R. A. Aziz,et al.  The Kr-Kr potential energy curve and related physical properties; the XC and HFD-B potential models , 1989 .

[8]  F. Pirani,et al.  Study of the interactions of atomic and molecular oxygen with O2 and N2 by scattering data , 1981 .

[9]  K. Fuke,et al.  Interatomic potentials of HgXe van der Waals complex formed in supersonic jets as studied by laser induced fluorescence spectroscopy , 1986 .

[10]  A. Weber Structure and Dynamics of Weakly Bound Molecular Complexes , 1987 .

[11]  C. Kong Combining rules for intermolecular potential parameters. II. Rules for the Lennard‐Jones (12–6) potential and the Morse potential , 1973 .

[12]  R. A. Aziz,et al.  Two- and three-body forces in the interaction of He atoms with Xe overlayers adsorbed on (0001) graphite , 1989 .

[13]  E. Rothe,et al.  Glory Scattering of Lithium by a Series of Molecules. I. Diatomics , 1968 .

[14]  V. Aquilanti,et al.  Molecular beam studies of weak interactions for open shell systems: spin-orbit dependence of the potential energy surface for O(3P) with H2 and CH4 , 1989 .

[15]  W. Breckenridge,et al.  Excitation spectra of CaAr, SrAr and BaAr molecules in a supersonic jet , 1986 .

[16]  J. R. Grover,et al.  The observation of resonance maxima in H ÷ CF4 and H + SF6 scattering , 1977 .

[17]  D. Auerbach High resolution differential cross sections and intermolecular potentials. I. Li--Kr and Li--Xe , 1974 .

[18]  G. Scoles,et al.  Intermolecular forces via hybrid Hartree–Fock–SCF plus damped dispersion (HFD) energy calculations. An improved spherical model , 1982 .

[19]  Fernando Pirani,et al.  Regularities in van der Waals forces: correlation between the potential parameters and polarizability , 1985 .

[20]  P. Sikora Combining rules for spherically symmetric intermolecular potentials , 1970 .

[21]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[22]  D. Zimmermann,et al.  Laser spectroscopic investigation of the van der Waals molecule NaKr84 , 1988 .

[23]  W. Brandt Calculation of Intermolecular Force Constants from Polarizabilities , 1956 .

[24]  William F. Meggers,et al.  Quantum Theory of Atomic Structure , 1960 .

[25]  Hcw Herman Beijerinck,et al.  Intermolecular potentials for the metastable neon*-rare gas and neon*-molecule systems , 1988 .

[26]  A. Laganà,et al.  Anisotropic intermolecular potentials for NOAr and NOKr from total differential cross section measurements , 1984 .

[27]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[28]  F. Pirani,et al.  The neon–argon interatomic potential , 1986 .

[29]  R. A. Aziz,et al.  The Ne-Ne interatomic potential revisited , 1989 .

[30]  M. W. Cole,et al.  Systematic trends in van der Waals interactions: Atom–atom and atom–surface cases , 1987 .

[31]  B. Soep,et al.  Potential characteristics of the mercury-methane van der Waals complex , 1987 .

[32]  John C. Slater,et al.  The Van Der Waals Forces in Gases , 1931 .

[33]  H. Rubahn Models for bond distance dependent alkali dimer–rare gas potentials , 1990 .

[34]  R. Düren,et al.  A determination of the NaAr ground state potential from differential cross section measurements , 1978 .

[35]  V. Aquilanti,et al.  Molecular beam studies of weak interactions for open‐shell systems: The ground and lowest excited states of rare gas oxides , 1988 .

[36]  R. A. Aziz,et al.  The neon–argon potential revisited , 1988 .

[37]  F. Pirani,et al.  Methane-Rare Gas Interaction Potentials from Scattering Experiments , 1988 .

[38]  E. A. Mason,et al.  Correlation and prediction of dispersion coefficients for isoelectronic systems , 1986 .

[39]  K. Ng,et al.  A simple reliable approximation for isotropic intermolecular forces. A critical test using HH(3Σu+) as a model , 1978 .

[40]  P. Casavecchia,et al.  The Ne–N2 potential energy surface from high‐resolution total differential scattering experiments and a close‐coupling and infinite‐order‐sudden analysis , 1988 .

[41]  Ch. Schlier,et al.  Genaue Potentialbestimmung aus Streumessungen: Alkali-Edelgas-Systeme , 1968 .

[42]  G. Scoles,et al.  Scattering experiments with hydrogen atoms. I. Differential collision cross sections for H + Ar,D + Ar and H + CH4 , 1978 .

[43]  F. Pirani,et al.  Absolute total elastic cross sections for O2-rare gases scattering , 1977 .

[44]  J. Fenn,et al.  Total cross section measurements for the scattering of argon by aliphatic hydrocarbons , 1975 .

[45]  V. Aquilanti,et al.  Orientational and spin–orbital dependence of interatomic forces , 1989 .

[46]  D. Pritchard,et al.  Differential Scattering of Na3S12and3P32from Ne: Determination of Ground- and Excited-State Potentials for NaNe , 1975 .

[47]  H. Böhm,et al.  A study of short‐range repulsions , 1982 .

[48]  Alan K. Burnham,et al.  Measurement of the dispersion in polarizability anisotropies , 1975 .

[49]  F. Pirani,et al.  Molecular beam study of the interaction of atomic and molecular oxygen with methane , 1987 .

[50]  V. Aquilanti,et al.  Molecular beam studies of weak interactions for open‐shell systems: The ground and lowest excited states of ArF, KrF, and XeF , 1988 .

[51]  F. Pirani,et al.  Accurate Ne-heavier rare gas interatomic potentials , 1983 .

[52]  J. Toennies,et al.  Modelling of repulsive potentials from atom charge density distributions: interactions of inert gas atoms , 1986 .

[53]  J. Toennies,et al.  Scattering experiments with fast hydrogen atoms. Velocity dependence of the integral elastic cross section with the rare gases in the energy range 0.01–1.00 eV , 1973 .

[54]  M. Spackman Accurate prediction of static dipole polarizabilities with moderately sized basis sets , 1989 .

[55]  K. Fuke,et al.  Electronic spectra of van der Waals molecules HgNe, HgAr, and HgKr in a supersonic jet , 1984 .

[56]  R. L. Roy,et al.  Improved potential energy surfaces for the interaction of H2 with Ar, Kr, and Xe , 1987 .

[57]  R. R. Bennett,et al.  A laser spectroscopic study of the X 1Σ+0−C 1Π1 transition of MgAr: Evidence for Λ‐type doubling , 1989 .

[58]  Aron Kuppermann,et al.  Scattering of thermal He beams by crossed atomic and molecular beams. IV. Spherically symmetric intermolecular potentials for He+CH4, NH3, H2O, SF6 , 1979 .

[59]  W. H. Breckenridge,et al.  Spectroscopic characterization of the X 1Σ0+ and C 1Π1 states of the ZnAr van der Waals molecule , 1988 .

[60]  H. Pauly,et al.  Interferenzen bei atomaren Stoßprozessen und ihre Interpretation durch ein modifiziertes Lennard-Jones-Potential , 1968 .

[61]  K. Foster,et al.  Nuclear Magnetic Relaxation in Hydrogen—Rare Gas Mixtures , 1972 .

[62]  F. Pirani,et al.  The interaction of atomic and molecular nitrogen with argon by scattering measurements , 1983 .

[63]  M. Keil,et al.  The HeNe interatomic potential from multiproperty fits and Hartree–Fock calculations , 1988 .

[64]  J. V. D. Biesen,et al.  Angle dependent interaction potentials for NOAr, NOKr and NOXe derived from various total collision cross section data , 1980 .

[65]  Hcw Herman Beijerinck,et al.  Long-range intermolecular potentials for the metastable rare gas-rare gas systems Ar*, Kr*(3P0,2)+Ar, Kr, Xe , 1988 .

[66]  K. Tang,et al.  Erratum: A simple theoretical model for the van der Waals potential at intermediate distances. I. Spherically symmetric potentials , 1977 .

[67]  S. Huzinaga GTO basis sets for heavier elements , 1977 .

[68]  R. A. Aziz,et al.  Simple accurate potentials for Ne–Kr and Ne–Xe , 1989 .

[69]  Ashok Kumar,et al.  Pseudo-spectral dipole oscillator strengths and dipole-dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He, Ne, Ar, Kr and Xe , 1985 .

[70]  W. Welz,et al.  Molecular beam scattering studies of orbiting resonances and the determination of van der Waals potentials for H–Ne, Ar, Kr, and Xe and for H2–Ar, Kr, and Xe , 1979 .

[71]  J. Toennies,et al.  Modelling of repulsive potentials from charge density distributions: A new site-site model applied to inert gas atoms with the diatomic molecules H2, N2, O2 , 1988 .

[72]  H. Werner,et al.  Finite perturbation calculations for the static dipole polarizabilities of the first-row atoms , 1976 .

[73]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[74]  V. Aquilanti,et al.  Scattering of magnetically analyzed F(2P) atoms and their interactions with He, Ne, H2 and CH4 , 1990 .

[75]  F. Pirani,et al.  Scattering experiments on the interaction of atomic and molecular nitrogen with krypton , 1985 .

[76]  G. Scoles Two-Body, Spherical, Atom-Atom, and Atom-Molecule Interaction Energies , 1980 .

[77]  C. Kong Combining rules for intermolecular potential parameters. I. Rules for the Dymond‐Alder potential , 1973 .

[78]  M. Tomassini,et al.  The interatomic potential of neon from scattering, gaseous and solid state data , 1979 .

[79]  Edward A. Mason,et al.  Statistical‐mechanical theory of a new analytical equation of state , 1989 .

[80]  F. Huisken,et al.  The anisotropic interaction potential of D2Ne from state‐to‐state differential cross sections for rotational excitation , 1980 .

[81]  L. Wharton,et al.  Absolute Total Scattering Cross Sections for 7Li on He, Ne, Kr, and Xe , 1972 .

[82]  Fernando Pirani,et al.  The N2Ar potential energy surface , 1983 .

[83]  R. Shafer,et al.  Quantum scattering theory of rotational relaxation and spectral line shapes in H2–He gas mixtures , 1973 .

[84]  D. Pritchard,et al.  Laser Spectroscopy of Bound NaNe Molecules , 1977 .

[85]  K. Tang,et al.  New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems , 1986 .

[86]  Piergiorgio Casavecchia,et al.  High‐resolution total differential cross sections for scattering of helium by O2, N2, and NO , 1986 .

[87]  Wilfried Meyer,et al.  Finite perturbation calculation for the static dipole polarizabilities of the atoms Na through Ca , 1976 .

[88]  P. Certain,et al.  Bounds to two- and three-body long-range interaction coefficients for S-state atoms , 1985 .

[89]  Sean C. Smith,et al.  Theory of Unimolecular and Recombination Reactions , 1990 .

[90]  B. Bederson,et al.  Atomic and Molecular Polarizabilities-A Review of Recent Advances , 1978 .