Multiplicative approximations and the hypervolume indicator

Indicator-based algorithms have become a very popular approach to solve multi-objective optimization problems. In this paper, we contribute to the theoretical understanding of algorithms maximizing the hypervolume for a given problem by distributing μ points on the Pareto front. We examine this common approach with respect to the achieved multiplicative approximation ratio for a given multi-objective problem and relate it to a set of μ points on the Pareto front that achieves the best possible approximation ratio. For the class of linear fronts and a class of concave fronts, we prove that the hypervolume gives the best possible approximation ratio. In addition, we examine Pareto fronts of different shapes by numerical calculations and show that the approximation computed by the hypervolume may differ from the optimal approximation ratio.

[1]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[2]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[3]  Mihalis Yannakakis,et al.  On the approximability of trade-offs and optimal access of Web sources , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[4]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[5]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[6]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[8]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[9]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[10]  Tobias Friedrich,et al.  Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice , 2009, EMO.

[11]  Arturo Hernández-Aguirre,et al.  G-Metric: an M-ary quality indicator for the evaluation of non-dominated sets , 2008, GECCO 2008.

[12]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[13]  Nicola Beume,et al.  SMS-EMOA: Multiobjective selection based on dominated hypervolume , 2007, Eur. J. Oper. Res..

[14]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[15]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[16]  Joshua D. Knowles,et al.  Bounded archiving using the lebesgue measure , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[17]  Anne Auger,et al.  Theory of the hypervolume indicator: optimal μ-distributions and the choice of the reference point , 2009, FOGA '09.

[18]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[19]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[20]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[21]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[22]  Nicola Beume,et al.  S-Metric Calculation by Considering Dominated Hypervolume as Klee's Measure Problem , 2009, Evolutionary Computation.

[23]  R. Fletcher Practical Methods of Optimization , 1988 .

[24]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[25]  Tobias Friedrich,et al.  Approximating the Volume of Unions and Intersections of High-Dimensional Geometric Objects , 2008, ISAAC.

[26]  David W. Corne,et al.  Properties of an adaptive archiving algorithm for storing nondominated vectors , 2003, IEEE Trans. Evol. Comput..

[27]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..