Mid-infrared In1−xAlxSb/InSb heterostructure diode lasers

Stimulated emission at 5.1 μm was demonstrated from a broad area In1−xAlxSb/InSb heterostructure diode laser grown by molecular beam epitaxy. For a 5 μs pulse and a 500 Hz repetition rate the threshold current density was 1480 A cm−2 at 77 K and the maximum operating temperature was 90 K at a current density of 2680 A cm−2. Maximum peak power output was estimated to be 28 mW per facet at 77 K and 4500 A cm−2.

[1]  T. Ashley,et al.  A heterojunction minority carrier barrier for InSb devices , 1993 .

[2]  Armin Lambrecht,et al.  Near-Room-temperature operation of Pb1−xSrxSe infrared diode lasers using molecular beam epitaxy growth techniques , 1988 .

[3]  George W. Turner,et al.  Double‐heterostructure diode lasers emitting at 3 μm with a metastable GaInAsSb active layer and AlGaAsSb cladding layers , 1994 .

[4]  J. Bablet,et al.  Low threshold injection laser in HgCdTe , 1993 .

[5]  George W. Turner,et al.  InAsSb/InAlAsSb quantum-well diode lasers emitting beyond 3 um , 1996, Photonics West.

[6]  R. Rediker,et al.  LUMINESCENCE AND COHERENT EMISSION IN A LARGE‐VOLUME INJECTION PLASMA IN InSb , 1964 .

[7]  A. White Negative resistance with Auger suppression in near-intrinsic, low-bandgap photo-diode structures , 1987 .

[8]  A. Beattie,et al.  An analytic approximation with a wide range of applicability for electron initiated Auger transitions in narrow‐gap semiconductors , 1996 .

[9]  L. R. Dawson,et al.  Midwave (4 μm) infrared lasers and light‐emitting diodes with biaxially compressed InAsSb active regions , 1994 .

[10]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[11]  J. W. Matthews,et al.  Use of misfit strain to remove dislocations from epitaxial thin films , 1976 .

[12]  J. Faist,et al.  High power mid‐infrared (λ∼5 μm) quantum cascade lasers operating above room temperature , 1996 .

[13]  Yu. P. Yakovlev,et al.  2.7–3.9 μm InAsSb(P)/InAsSbP low threshold diode lasers , 1994 .

[14]  R. Fork,et al.  POPULATION PULSATIONS AND LIFETIMES IN He–Ne LASERS , 1964 .

[15]  R. M. Biefeld,et al.  InAsSb‐based mid‐infrared lasers (3.8–3.9 μm) and light‐emitting diodes with AlAsSb claddings and semimetal electron injection, grown by metalorganic chemical vapor deposition , 1996 .

[16]  P. Mak,et al.  Single‐mode molecular beam epitaxy grown PbEuSeTe/PbTe buried‐heterostructure diode lasers for CO2 high‐resolution spectroscopy , 1991 .

[17]  Seiko Mitachi,et al.  Prediction of loss minima in infra-red optical fibres , 1981 .

[18]  R. H. Williams,et al.  Molecular‐beam epitaxy of (100) InSb for CdTe/InSb device applications , 1988 .

[19]  C. T. Elliott,et al.  Room temperature narrow gap semiconductor diodes as sources and detectors in the 5–10 μm wavelength region , 1996 .

[20]  Alan Kost,et al.  Mid‐wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices , 1995 .

[21]  Neil T. Gordon,et al.  Uncooled InSb/In1−xAlxSb mid‐infrared emitter , 1994 .

[22]  H. Choi,et al.  InAsSb/AlAsSb double‐heterostructure diode lasers emitting at 4 μm , 1994 .

[23]  R. Zucca,et al.  HgCdTe double heterostructure diode lasers grown by molecular‐beam epitaxy , 1992 .