Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks

Two-dimensional (2D) nanosheets, which possess atomic or molecular thickness and infinite planar lengths, are regarded as the thinnest functional nanomaterials. The recent development of methods for manipulating graphene (carbon nanosheet) has provided new possibilities and applications for 2D systems; many amazing functionalities such as high electron mobility and quantum Hall effects have been discovered. However, graphene is a conductor, and electronic technology also requires insulators, which are essential for many devices such as memories, capacitors, and gate dielectrics. Along with graphene, inorganic nanosheets have thus increasingly attracted fundamental research interest because they have the potential to be used as dielectric alternatives in next-generation nanoelectronics. Here, we review the progress made in the properties of dielectric nanosheets, highlighting emerging functionalities in electronic applications. We also present a perspective on the advantages offered by this class of materials for future nanoelectronics.

[1]  K. Saito,et al.  Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-based thin films with long-range lattice matching , 2002 .

[2]  M. Niederberger,et al.  Microwave chemistry for inorganic nanomaterials synthesis. , 2010, Nanoscale.

[3]  M. Osada,et al.  Probing intrinsic polarization properties in bismuth-layered ferroelectric films , 2007 .

[4]  Minoru Osada,et al.  Engineered interfaces of artificial perovskite oxide superlattices via nanosheet deposition process. , 2010, ACS nano.

[5]  M. Kakihana,et al.  Property design of Bi4Ti3O12-based thin films using a site-engineered concept , 2003 .

[6]  S. Banerjee,et al.  Large-scale synthesis of single-crystalline perovskite nanostructures. , 2003, Journal of the American Chemical Society.

[7]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[8]  T. Sasaki,et al.  Fabrication of nanostructured functional materials using exfoliated nanosheets as a building block , 2007 .

[9]  C. Zhi,et al.  Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties , 2009 .

[10]  K. Domen,et al.  Exfoliated nanosheets as a new strong solid acid catalyst. , 2003, Journal of the American Chemical Society.

[11]  K. Rabe New life for the 'dead layer' , 2006 .

[12]  M. Osada,et al.  Robust high-κ response in molecularly thin perovskite nanosheets. , 2010, ACS nano.

[13]  Ho-Kyu Kang,et al.  Deposition of extremely thin (Ba,Sr)TiO3 thin films for ultra‐large‐scale integrated dynamic random access memory application , 1995 .

[14]  M. Osada,et al.  Exfoliated oxide nanosheets: new solution to nanoelectronics , 2009 .

[15]  T. Mallouk,et al.  Self-assembly of Tiled Perovskite Monolayer and Multilayer Thin Films , 2000 .

[16]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[17]  T. Sasaki,et al.  Preparation and Characterization of the Eu3+ Doped Perovskite Nanosheet Phosphor: La0.90Eu0.05Nb2O7 , 2007 .

[18]  M. Kakihana,et al.  Ferroelectric properties of lanthanide-substituted Bi4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition , 2003 .

[19]  Zhi-guo Liu,et al.  Structure and electrical properties of c-axis epitaxial Srm−3Bi4TimO3m+3(m=5 and 6) thin films , 2009 .

[20]  T. Sasaki,et al.  First-Principles Study of Two-Dimensional Titanium Dioxides , 2003 .

[21]  Cheol Seong Hwang,et al.  Al‐Doped TiO2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors , 2008 .

[22]  T. Mallouk,et al.  Perovskites by Design: A Toolbox of Solid-State Reactions , 2002 .

[23]  J. Petzelt Dielectric Grain-Size Effect in High-Permittivity Ceramics , 2010 .

[24]  M. Osada,et al.  Ferromagnetism in two-dimensional Ti 0.8 Co 0.2 O 2 nanosheets , 2006 .

[25]  C. Hwang Thickness-dependent dielectric constants of (Ba,Sr)TiO3 thin films with Pt or conducting oxide electrodes , 2002 .

[26]  C. Hwang,et al.  Electrically Benign Dry-Etching Method for Rutile TiO2 Thin-Film Capacitors with Ru Electrodes , 2010 .

[27]  R. Ma,et al.  Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets , 2006 .

[28]  M. Osada,et al.  The effects of neodymium content and site occupancy on spontaneous polarization of epitaxial (Bi4−xNdx)Ti3O12 films , 2005 .

[29]  Minoru Osada,et al.  High‐κ Dielectric Nanofilms Fabricated from Titania Nanosheets , 2006 .

[30]  Tobin J Marks,et al.  High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. , 2010, Chemical reviews.

[31]  V. Constantino,et al.  Layered niobate nanosheets: building blocks for advanced materials assembly , 2009 .

[32]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[33]  P. Woodward,et al.  Epitaxial Thin-Film Deposition and Dielectric Properties of the Perovskite Oxynitride BaTaO2N , 2007 .

[34]  R. M. Fleming,et al.  Discovery of a useful thin-film dielectric using a composition-spread approach , 1998, Nature.

[35]  C. Wenger,et al.  Thin BaHfO3 high-k dielectric layers on TiN for memory capacitor applications , 2008 .

[36]  Kazunori Takada,et al.  Exfoliated nanosheet crystallite of cesium tungstate with 2D pyrochlore structure: synthesis, characterization, and photochromic properties. , 2008, ACS nano.

[37]  M. Osada,et al.  Langmuir–Blodgett Fabrication of Nanosheet-Based Dielectric Films without an Interfacial Dead Layer , 2008 .

[38]  M. Osada,et al.  Solution-Based Fabrication of High-κ Dielectric Nanofilms Using Titania Nanosheets as a Building Block , 2007 .

[39]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Rabe,et al.  Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures , 2004, Science.

[41]  Lisha Zhang,et al.  Bi2WO6 nano- and microstructures: shape control and associated visible-light-driven photocatalytic activities. , 2007, Small.

[42]  J. Gregg,et al.  Exploring grain size as a cause for “dead-layer” effects in thin film capacitors , 2002 .

[43]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[44]  D. M. Smyth,et al.  Energy storage in ceramic dielectrics , 1972 .

[45]  Koichiro Honda,et al.  PbTiO3- and Pb(Zr,Ti)O3-Covered ZnO Nanorods , 2009 .

[46]  Mamoru Watanabe,et al.  Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. , 2003, Journal of the American Chemical Society.

[47]  S. Wada,et al.  Preparation of barium titanate nanocube particles by solvothermal method and their characterization , 2007, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics.

[48]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[49]  M. Niederberger,et al.  Organic chemistry in inorganic nanomaterials synthesis , 2008 .

[50]  H. Funakubo Degradation-free dielectric property using bismuth layer-structured dielectrics having natural superlattice structure , 2008 .

[51]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[52]  S. Ogale,et al.  Dilute Doping, Defects, and Ferromagnetism in Metal Oxide Systems , 2010, Advanced materials.

[53]  Masaru Miyayama,et al.  Large remanent polarization of Bi4Ti3O12-based thin films modified by the site engineering technique , 2002 .

[54]  A. Sugawara,et al.  Preparation of KNbO3 Thin Film by Self-Assembly of Perovskite Nanosheet , 2005 .

[55]  Arthur W. Sleight,et al.  High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases , 2000 .

[56]  Kazunori Takada,et al.  Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. , 2004, Journal of the American Chemical Society.

[57]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[58]  A. Geim,et al.  Graphene: Exploring carbon flatland , 2007 .

[59]  K. Fukuda,et al.  Synthesis of nanosheet crystallites of ruthenate with an alpha-NaFeO2-related structure and its electrochemical supercapacitor property. , 2010, Inorganic chemistry.

[60]  Minoru Osada,et al.  Large remanent polarization of (Bi, Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition , 2002 .

[61]  Exploration of oxide-based diluted magnetic semiconductors toward transparent spintronics , 2003, cond-mat/0305435.

[62]  P. McIntyre,et al.  Microstructure of (Ba, Sr)TiO3 thin films deposited by physical vapor deposition at 480 °C and its influence on the dielectric properties , 2000 .

[63]  S. Wada,et al.  Preparation of Barium Titanate and Strontium Titanate Nanocube Particles and their Accumulation Using Smart Glue , 2009 .

[64]  H. Funakubo,et al.  Thickness dependence of dielectric properties in bismuth layer-structured dielectrics , 2006 .

[65]  Kang L. Wang,et al.  Lattice distortion oriented angular self-assembly of monolayer titania sheets. , 2011, Journal of the American Chemical Society.

[66]  J. Gregg,et al.  Investigation of dead-layer thickness in SrRuO3/Ba0.5Sr0.5TiO3/Au thin-film capacitors , 2001 .

[67]  S. Wada,et al.  Size dependence of THz region dielectric properties for barium titanate fine particles , 2008 .

[68]  M. Antonietti,et al.  Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation. , 2004, Journal of the American Chemical Society.

[69]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[70]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[71]  Hyuk-Nyun Kim,et al.  Layer-by-Layer Growth and Condensation Reactions of Niobate and Titanoniobate Thin Films , 1999 .

[72]  T. Sasaki,et al.  Soft-Chemical Exfoliation of Na0.9Mo2O4: Preparation and Electrical Conductivity Characterization of a Molybdenum Oxide Nanosheet , 2011 .

[73]  T. Sasaki,et al.  Semiconductor Nanosheet Crystallites of Quasi-TiO2 and Their Optical Properties , 1997 .

[74]  Darrell G. Schlom,et al.  A Thin Film Approach to Engineering Functionality into Oxides , 2008 .

[75]  C. Mead Anomalous capacitance of thin dielectric structures , 1961 .

[76]  Angus I. Kingon,et al.  High-Permittivity Perovskite Thin Films for Dynamic Random-Access Memories , 1996 .

[77]  J. Gregg,et al.  Thickness-induced stabilization of ferroelectricity in SrRuO3/Ba0.5Sr0.5TiO3/Au thin film capacitors , 2002 .

[78]  Mikko Heikkilä,et al.  Atomic Layer Deposition of High‐k Oxides of the Group 4 Metals for Memory Applications , 2009 .

[79]  W. Sugimoto,et al.  Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. , 2003, Angewandte Chemie.

[80]  T. Sasaki,et al.  Study on exfoliation of layered perovskite-type niobates , 2002 .

[81]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[82]  Hongkun Park,et al.  Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy , 2002 .

[83]  Thomas Tybell,et al.  Ferroelectricity in thin perovskite films , 1999 .

[84]  Renzhi Ma,et al.  Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge‐Bearing Functional Crystallites , 2010, Advances in Materials.

[85]  Mikko Ritala,et al.  Atomic layer deposition of high capacitance density Ta2O5-ZrO2 based dielectrics for metal-insulator-metal structures , 2010 .

[86]  Frey Mh,et al.  GRAIN-SIZE EFFECT ON STRUCTURE AND PHASE TRANSFORMATIONS FOR BARIUM TITANATE , 1996 .

[87]  Hongkun Park,et al.  Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. , 2006, Nano letters.

[88]  H. Ploehn,et al.  Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage † , 2009, Materials.

[89]  K. Kukli,et al.  Properties of (Nb1 − xTax)2O5 solid solutions and (Nb1 − xTax)2O5-ZrO2 nanolaminates grown by Atomic Layer Epitaxy , 1997 .

[90]  R. Ma,et al.  Anion-exchangeable layered materials based on rare-earth phosphors: unique combination of rare-earth host and exchangeable anions. , 2010, Accounts of chemical research.

[91]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[92]  David Vanderbilt,et al.  Enhancement of ferroelectricity at metal-oxide interfaces. , 2008, Nature materials.

[93]  Hyuk-Nyun Kim,et al.  Nanoscale Tubules Formed by Exfoliation of Potassium Hexaniobate , 2000 .

[94]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[95]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[96]  Markus Niederberger,et al.  Surfactant-free nonaqueous synthesis of metal oxide nanostructures. , 2008, Angewandte Chemie.

[97]  James F. Scott,et al.  Intrinsic dielectric response in ferroelectric nano-capacitors , 2004 .

[98]  R. D. Shannon,et al.  Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides , 2006 .

[99]  T. Sasaki,et al.  Osmotic Swelling to Exfoliation. Exceptionally High Degrees of Hydration of a Layered Titanate , 1998 .

[100]  T. Sasaki,et al.  Unusual crystallization behaviors of anatase nanocrystallites from a molecularly thin titania nanosheet and its stacked forms: increase in nucleation temperature and oriented growth. , 2007, Journal of the American Chemical Society.

[101]  G. Park,et al.  Macromolecular Nanoplatelet of Aurivillius-type Layered Perovskite Oxide, Bi4Ti3O12 , 2001 .

[102]  M. Osada,et al.  Solution-Based Fabrication of Perovskite Nanosheet Films and Their Dielectric Properties , 2009 .

[103]  A. Kingon,et al.  Ferroelectricity in thin films: The dielectric response of fiber-textured (BaxSr1−x)Ti1+yO3+z thin films grown by chemical vapor deposition , 1999 .

[104]  M. Osada,et al.  Impact of perovskite layer stacking on dielectric responses in KCa2Nan−3NbnO3n+1 (n=3–6) Dion–Jacobson homologous series , 2010 .

[105]  M. Venkatesan,et al.  Donor impurity band exchange in dilute ferromagnetic oxides , 2005, Nature materials.

[106]  Angus Kingon,et al.  Device physics: Memories are made of … , 1999, Nature.

[107]  M. Kakihana,et al.  Defect Engineering for Control of Polarization Properties in SrBi2Ta2O9 , 2002 .

[108]  M. Osada,et al.  A-Site-Modified Perovskite Nanosheets and Their Integration into High-κ Dielectric Thin Films with a Clean Interface , 2010 .

[109]  R. Ma,et al.  Colloidal unilamellar layers of tantalum oxide with open channels. , 2007, Inorganic chemistry.

[110]  Robert M. Bowman,et al.  Characteristics of single crystal “thin film” capacitor structures made using a focused ion beam microscope , 2004 .

[111]  S. Komatsu,et al.  Epitaxial growth of SrTiO3 films on Pt electrodes and their electrical properties , 1992 .

[112]  Nanocapacitors: undead layers breathe new life. , 2009, Nature materials.

[113]  V. Shenoy,et al.  Tunable dielectric properties of transition metal dichalcogenides. , 2011, ACS nano.

[114]  Masashi Kawasaki,et al.  Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide , 2001, Science.

[115]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[116]  Mamoru Watanabe,et al.  Macromolecule-like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It , 1996 .

[117]  M. Osada,et al.  Orbital reconstruction and interface ferromagnetism in self-assembled nanosheet superlattices. , 2011, ACS nano.

[118]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .

[119]  M. Osada,et al.  Construction of highly ordered lamellar nanostructures through Langmuir-Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties. , 2009, ACS nano.

[120]  Kim Dae Sung,et al.  Na0.9Mo2O4の温和な化学的剥離 酸化モリブデンナノシートの調製および電気伝導特性 , 2011 .

[121]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[122]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[123]  Y. Noguchi,et al.  Large remanent polarization of vanadium-doped Bi4Ti3O12 , 2001 .

[124]  G. Brennecka,et al.  Processing Technologies for High Permittivity Thin Films in Capacitor Applications. , 2010 .

[125]  M. Antonietti,et al.  A general soft-chemistry route to perovskites and related materials: synthesis of BaTiO(3), BaZrO(3), and LiNbO(3) nanoparticles. , 2004, Angewandte Chemie.

[126]  T. Mallouk,et al.  Dielectric Properties of the Lamellar Niobates and Titanoniobates AM2Nb3O10 and ATiNbO5 (A = H, K, M = Ca, Pb), and Their Condensation Products Ca4Nb6O19 and Ti2Nb2O9 , 1999 .

[127]  V. Chevallier,et al.  Exfoliated nanoplatelets of an Aurivillius phase, Bi3.25La0.75Ti3O12: Characterisation by X-ray diffraction and by high-resolution electron microscopy , 2008 .

[128]  T. Sasaki,et al.  Eu0.56Ta2O7: A New Nanosheet Phosphor with the High Intrananosheet Site Photoactivator Concentration , 2008 .

[129]  T. Sasaki,et al.  Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals , 2003 .

[130]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[131]  B. S. Kang,et al.  Lanthanum-substituted bismuth titanate for use in non-volatile memories , 1999, Nature.

[132]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[133]  M. Osada,et al.  Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition , 2002 .

[134]  M. Osada,et al.  Solution-Based Fabrication of Perovskite Multilayers and Superlattices Using Nanosheet Process , 2011 .

[135]  H. Funakubo,et al.  Novel Candidate of c-axis-oriented BLSF Thin Films for High-Capacitance Condenser , 2002 .

[136]  C. Hwang,et al.  High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition , 2004 .

[137]  S. Wada,et al.  Origin of Ultrahigh Dielectric Constants for Barium Titanate Nanoparticles , 2007 .

[138]  Mikko Ritala,et al.  Development of Dielectric Properties of Niobium Oxide, Tantalum Oxide, and Aluminum Oxide Based Nanolayered Materials , 2001 .

[139]  K. Domen,et al.  Titanium Niobate and Titanium Tantalate Nanosheets as Strong Solid Acid Catalysts , 2004 .

[140]  S. Wada,et al.  Composite Structure and Size Effect of Barium Titanate Nanoparticles , 2007, 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics.

[141]  A Roelofs,et al.  Towards the limit of ferroelectric nanosized grains , 2003 .

[142]  Nicola A. Spaldin,et al.  Origin of the dielectric dead layer in nanoscale capacitors , 2006, Nature.

[143]  M. Osada,et al.  Gigantic magneto-optical effects induced by (Fe∕Co)-cosubstitution in titania nanosheets , 2008 .

[144]  Y. Noguchi,et al.  Metastable Sr0.5TaO3 Perovskite Oxides Prepared by Nanosheet Processing , 2008 .

[145]  M. Osada,et al.  Gigantic Magneto–Optical Effects in Multilayer Assemblies of Two‐Dimensional Titania Nanosheets , 2006 .

[146]  James F. Scott,et al.  Settling the “Dead Layer” Debate in Nanoscale Capacitors , 2009, Advanced materials.

[147]  T. Sasaki,et al.  Layer-by-layer assembly of titania nanosheet/polycation composite films , 2001 .

[148]  F. Morrison,et al.  Size effects on thin film ferroelectrics: Experiments on isolated single crystal sheets , 2008 .

[149]  M. Osada,et al.  Synthesis of Mn-Substituted Titania Nanosheets and Ferromagnetic Thin Films with Controlled Doping , 2009 .

[150]  Yasuhiro Shimamoto,et al.  Rutile-type TiO2 thin film for high-k gate insulator , 2003 .

[151]  Michael Treacy,et al.  Electron Microscopy Study of Delamination in Dispersions of the Perovskite-Related Layered Phases K[Ca2Nan−3NbnO3n+1]: Evidence for Single-Layer Formation , 1990 .

[152]  T. Tanaka,et al.  Highly Organized Self‐Assembled Monolayer and Multilayer Films of Titania Nanosheets , 2004 .

[153]  J. Speck,et al.  Realization of high tunability barium strontium titanate thin films by rf magnetron sputtering , 1999 .

[154]  J. Gregg Ferroelectrics at the nanoscale , 2009 .

[155]  K. Uematsu,et al.  Characterization of Potassium Niobate Produced by Self-Assembled Nanosheet from Aqueous Solution , 2002 .

[156]  T. Sasaki,et al.  Enhancement of Host Excitation-Mediated Photoluminescence and Preferential Quenching of Direct Photoactivator Excitation-Mediated Photoluminescence by Exfoliation of Layered KLa0.90Sm0.05Nb2O7 into La0.90Sm0.05Nb2O7 Nanosheets , 2009 .

[157]  D. Golberg Nanomaterials: Exfoliating the inorganics. , 2011, Nature nanotechnology.

[158]  Valentin Craciun,et al.  Characteristics of the surface layer of barium strontium titanate thin films deposited by laser ablation , 2000 .

[159]  C. Tai,et al.  Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb) , 2004 .

[160]  R. Cava Dielectric materials for applications in microwave communications , 2001 .

[161]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[162]  Jannik C. Meyer,et al.  The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes , 2008 .

[163]  W. F. Peck,et al.  Dielectric properties of TiO2-Nb2O5 crystallographic shear structures , 1996 .

[164]  C. Zhou,et al.  Intrinsic dead layer effect and the performance of ferroelectric thin film capacitors , 1997 .

[165]  Sang Woon Lee,et al.  Capacitors with an Equivalent Oxide Thickness of <0.5 nm for Nanoscale Electronic Semiconductor Memory , 2010 .

[166]  M. Osada,et al.  Controlled Polarizability of One‐Nanometer‐Thick Oxide Nanosheets for Tailored, High‐κ Nanodielectrics , 2011 .

[167]  L. Martin,et al.  Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films , 2010 .

[168]  H. Imai,et al.  Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method , 2011 .

[169]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[170]  Okada,et al.  Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. , 1988, Physical review. B, Condensed matter.

[171]  T. Sasaki,et al.  (K1.5Eu0.5)Ta3O10: A Far-Red Luminescent Nanosheet Phosphor with the Double Perovskite Structure , 2008 .