Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator

We report measurement of the first carrier-envelope offset (CEO) frequency signal from a spectrally broadened ultrafast solid-state laser oscillator operating in the 1.5 μm spectral region. The f-to-2f CEO frequency beat signal is 49 dB above the noise floor (100-kHz resolution bandwidth) and the free-running linewidth of 3.6 kHz is significantly better than typically obtained by ultrafast fiber laser systems. We used a SESAM mode-locked Er:Yb:glass laser generating 170-fs pulses at a 75 MHz pulse repetition rate with 110-mW average power. It is pumped by one standard telecom-grade 980-nm diode consuming less than 1.5 W of electrical power. Without any further pulse compression and amplification, a coherent octave-spanning frequency comb is generated in a polarization-maintaining highly-nonlinear fiber (PM-HNLF). The fiber length was optimized to yield a strong CEO frequency beat signal between the outer Raman soliton and the spectral peak of the dispersive wave within the supercontinuum. The polarization-maintaining property of the supercontinuum fiber was crucial; comparable octave-spanning supercontinua from two non-PM fibers showed higher intensity noise and poor coherence. A stable CEO-beat was observed even with pulse durations above 200 fs. Achieving a strong CEO frequency signal from relatively long pulses with moderate power levels substantially relaxes the demands on the driving laser, which is particularly important for novel gigahertz diode-pumped solid-state and semiconductor lasers.

[1]  Gesine Grosche,et al.  Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies. , 2004, Optics express.

[2]  A. Schlatter,et al.  Nearly QuantumNoise Limited Timing Jitter fromMiniature Er:Yb:Glass Lasers , 2005 .

[3]  Rüdiger Paschotta,et al.  Pulse compression with supercontinuum generation in microstructure fibers , 2005 .

[4]  K. Weingarten,et al.  100 GHz passively mode-locked Er:Yb:glass laser at 1.5 microm with 1.6-ps pulses. , 2008, Optics express.

[5]  I Hartl,et al.  Fiber-laser frequency combs with subhertz relative linewidths. , 2006, Optics letters.

[6]  P. Wisk,et al.  Coherence of supercontinua generated by ultrashort pulses compressed in optical fibers. , 2008, Optics letters.

[7]  Scott A. Diddams,et al.  10-GHz Self-Referenced Optical Frequency Comb , 2009, Science.

[8]  A Bartels,et al.  Passively mode-locked 10 GHz femtosecond Ti:sapphire laser. , 2008, Optics letters.

[9]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[10]  O. Prochnow,et al.  Quantum-limited noise performance of a femtosecond all-fiber ytterbium laser. , 2009, Optics express.

[11]  H Matsumoto,et al.  Frequency metrology with a turnkey all-fiber system. , 2004, Optics letters.

[12]  Rüdiger Paschotta,et al.  Compact Nd:YVO/sub 4/ lasers with pulse repetition rates up to 160 GHz , 2002 .

[13]  K. Petermann,et al.  High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation , 2009 .

[14]  I Hartl,et al.  Integrated self-referenced frequency-comb laser based on a combination of fiber and waveguide technology. , 2005, Optics express.

[15]  Alfred Leitenstorfer,et al.  Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and selfreferencing detection of the carrier-envelope phase evolution. , 2003, Optics express.

[16]  William C. Swann,et al.  Low-noise fiber-laser frequency combs (Invited) , 2007 .

[17]  Erik Benkler,et al.  Circumvention of noise contributions in fiber laser based frequency combs. , 2005, Optics express.

[18]  Ursula Keller,et al.  Passively modelocked surface-emitting semiconductor lasers , 2006 .

[19]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[20]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[21]  Scott A. Diddams,et al.  Optical Frequency Synthesis and Comparison with Uncertainty at the 10-19 Level , 2004, Science.

[22]  Feng-Lei Hong,et al.  Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement using the second harmonic generation of a mode-locked fiber laser , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[23]  K Feder,et al.  Fiber-laser-based frequency comb with a tunable repetition rate. , 2004, Optics express.

[24]  F X Kärtner,et al.  Nonintrusive phase stabilization of sub-two-cycle pulses from a prismless octave-spanning Ti:sapphire laser. , 2008, Optics letters.

[25]  Scott A. Diddams,et al.  Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency , 2008 .

[26]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[27]  Patrick Georges,et al.  New laser crystals for the generation of ultrashort pulses , 2007 .

[28]  John M Dudley,et al.  Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. , 2002, Optics letters.

[29]  M. Golling,et al.  Vertical integration of ultrafast semiconductor lasers , 2007, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[30]  U. Keller,et al.  Optical phase noise and carrier-envelope offset noise of mode-locked lasers , 2006 .

[31]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[32]  Lars Grüner-Nielsen,et al.  Highly nonlinear fibers for very wideband supercontinuum generation , 2008, SPIE LASE.

[33]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[34]  Ursula Keller,et al.  Modelocked integrated external-cavity surface emitting laser , 2009 .

[35]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[36]  R. Windeler,et al.  Erratum to: Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber , 2003 .

[37]  U Keller,et al.  Growth parameter optimization for fast quantum dot SESAMs. , 2008, Optics express.

[38]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[39]  L. Tarasov Laser Physics and Applications , 1987 .

[40]  William C. Swann,et al.  Suppression of pump-induced frequency noise in fiber-laser frequency combs leading to sub-radian fceo phase excursions , 2006 .

[41]  U. Keller,et al.  High precision optical characterization of semiconductor saturable absorber mirrors (SESAMs) , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[42]  K. Weingarten,et al.  Soliton mode-locked Er:Yb:glass laser. , 2005, Optics letters.

[43]  D. Miller,et al.  Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. , 1992, Optics letters.

[44]  T. Südmeyer,et al.  Compact Er:Yb:glass-laser-based supercontinuum source for high-resolution optical coherence tomography. , 2008, Optics express.

[45]  R. Windeler,et al.  Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber , 2003 .

[46]  Ian Farrer,et al.  Ultrafast optical Stark mode-locked semiconductor laser. , 2008, Optics letters.

[47]  Nathan R Newbury,et al.  Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. , 2004, Optics letters.

[48]  Zhaoming Zhu,et al.  Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers , 2004 .

[49]  Franz X Kärtner,et al.  High repetition rate, low jitter, low intensity noise, fundamentally mode-locked 167 fs soliton Er-fiber laser. , 2007, Optics letters.

[50]  P. Russbüldt,et al.  White-light frequency comb generation with a diode-pumped Cr:LiSAF laser. , 2001, Optics letters.

[51]  Ursula Keller,et al.  Soliton mode-locking with saturable absorbers , 1996 .

[52]  K. Weingarten,et al.  Semiconductor saturable absorber mirror structures with low saturation fluence , 2005 .